Cumulus cell-released tumor necrosis factor (TNF)-α promotes post-ovulatory aging of mouse oocytes.

Aging (Albany NY)

Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City 271018, P. R. China.

Published: July 2018

Although previous studies indicated that cumulus cells (CCs) accelerate oocyte aging by releasing soluble factors, the factors have yet to be characterized. While demonstrating that CCs promoted oocyte aging by releasing soluble Fas ligand (sFasL), our recent study suggested that CCs might secrete other factors to mediate oocyte aging as well. This study tested whether CCs accelerate oocyte aging by secreting tumor necrosis factor (TNF)-α. The results showed that mouse CCs undergoing apoptosis released soluble TNF-α (sTNF-α) during in vitro aging. While ethanol activation rates were higher, the maturation-promoting factor (MPF) activity was lower significantly after culture of cumulus-denuded oocytes (DOs) in medium conditioned with CCs for 36 h than in medium conditioned for 24 h. Aging mouse oocytes expressed TNF-receptor 1. The CCs released equal amounts of sTNF-α and sFasL during aging in vitro, and the TNF-α-knockdown CCs secreted less sFasL than the control CCs did. Treatment of DOs in vitro with sTNF-α significantly accelerated their aging. The aging-promoting effect of sTNF-α was significantly reduced in TNF-α-knocked-down CCs and in CCs from the TNF-α-knockout mice. It is concluded that mouse CCs accelerate oocyte aging by secreting sTNF-α as well as sFasL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6075436PMC
http://dx.doi.org/10.18632/aging.101507DOI Listing

Publication Analysis

Top Keywords

oocyte aging
20
ccs
12
ccs accelerate
12
accelerate oocyte
12
aging
10
tumor necrosis
8
necrosis factor
8
factor tnf-α
8
aging mouse
8
mouse oocytes
8

Similar Publications

Ovarian aging significantly impacts female fertility, with mitochondrial dysfunction emerging as a key factor. This study investigated the effects of recombinant follicle-stimulating hormone (FSH) and luteinizing hormone (LH) on mitochondrial function and metabolism in aging female reproductive cells. Human granulosa cells (HGL5) were treated with FSH/LH or not.

View Article and Find Full Text PDF

This study investigated the effects of coenzyme Q10 (CoQ10) supplementation on in vitro oocyte maturation, lipid peroxidation, and embryonic development in prepubertal and aging Thai-Holstein cows. First, we used slaughterhouse-derived oocytes to confirm that CoQ10 (50 μM) significantly enhanced cleavage (53.33% vs.

View Article and Find Full Text PDF

Chronic inflammation is increasingly recognized as a critical factor in female reproductive health; influencing natural conception and the outcomes of assisted reproductive technologies such as in vitro fertilization (IVF). An essential component of innate immunity, the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is one of the major mediators of inflammatory responses, and its activation is closely linked to oxidative stress. This interaction contributes to a decline in oocyte quality, reduced fertilization potential, and impaired embryo development.

View Article and Find Full Text PDF

The decline of oocyte quality with advanced maternal age has a detrimental effect on female fertility. However, there is limited knowledge of therapeutic options and their mechanisms to improve oocyte quality in reproductively older women. In this study, we demonstrated that supplementation of salidroside improves the oocyte quality of reproductively old mice.

View Article and Find Full Text PDF

Recent advances in embryology have shown that the sister blastomeres of 2-cell mouse and human embryos differ reciprocally in potency. An open question is whether the blastomeres became different as opposed to originating as different. Here we wanted to test two conflicting models: one proposing that each blastomere contains both animal and vegetal materials in balanced proportions because the plane of first cleavage runs close to the animal-vegetal axis of the fertilized oocyte; and the other model proposing that each blastomere contains variable proportions of animal and vegetal materials because the plane of the first cleavage can vary depending on the topology of fertilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!