EHealth behaviour change interventions that help participants to adhere to professional physical activity recommendations can help to prevent future events of cardiovascular diseases (CVD). Therefore, identifying user groups of such interventions based on stages of health behaviour change is of great importance to provide tailored content to users instead of one-size-fits-all approaches. Our study used Latent Class Analysis (LCA) to identify underlying classes of users of an eHealth behaviour change intervention based on stages of change and associated variables. We compared participants' self-allocated stage with their latent class stage membership to display the correlation and mean differences between the two approaches. This was done by analysing baseline data of N = 310 people interested in reducing their CVD risk. LCA identified a three-class solution: (non-)intenders (19.4%), non-habituated actors (43.2%) and habituated actors (37.4%). The interrelation between self-allocated and latent class stage membership was moderate ((308) = .49, < .001). Significant mean differences for (non-)intenders and non-habituated actors were found in social-cognitive variables. Results showed that self-allocated stage outcomes represent a pseudo stage model - linear trends can be reported for stage-associated social-cognitive variables. The study provides information on the validity of stage measures, which can inform future interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15438627.2018.1502181DOI Listing

Publication Analysis

Top Keywords

behaviour change
16
latent class
12
user groups
8
physical activity
8
change intervention
8
people interested
8
interested reducing
8
ehealth behaviour
8
based stages
8
class stage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!