l-Citrulline is a nonessential amino acid with a variety of physiological functions and can be enzymatically produced by arginine deiminase (ADI, EC 3.5.3.6). The enzymatic-production approach is of immense interest because of its mild conditions, high yield, low cost, and environmental benignity. However, the major hindrances of l-citrulline industrialization are the poor thermostability and enzyme activity of ADI. Hence, in this work, directed evolution and site-directed mutagenesis aided with in silico screening, including the use of b-factor values and HoTMuSiC, were applied to a previously identified ADI from Enterococcus faecalis SK23.001 ( EfADI), and a triple-site variant R15K-F269Y-G292P was obtained. The triple-site variant displays a 2.5-fold higher specific enzyme activity (333 U mg), a lower K value of 6.4 mM, and a 6.1-fold longer half-life ( t = 86.7 min) than wild-type EfADI. This work provides a protein-engineering strategy to improve enzyme activity and thermostability, which might be transferrable to other ADIs and enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b02858DOI Listing

Publication Analysis

Top Keywords

enzyme activity
12
arginine deiminase
8
enterococcus faecalis
8
faecalis sk23001
8
triple-site variant
8
thermostability specific-activity
4
specific-activity enhancement
4
enhancement arginine
4
deiminase enterococcus
4
sk23001 semirational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!