Protocatechuic acid inhibits the growth of ovarian cancer cells by inducing apoptosis and autophagy.

Phytother Res

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, China.

Published: November 2018

Protocatechuic acid (PCA), present in many fruits and vegetables, exhibited various biological activities. Here, we provided evidence that it could be developed as a potential chemotherapeutic agent against human ovarian cancer. We found that PCA treatment significantly reduced the cell viability and colony formation of OVCAR-3, SKOV-3, and A2780 cells. OVCAR-3 cells were selected as a test model system for investigating molecular mechanism. PCA treatment induced cell cycle arrest in G /M phase, the activation of poly (ADP-ribose) polymerase (PARP) and caspase-3, the upregulation of Bax and downregulation of Bcl-2 in OVCAR-3 cells. We also observed that PCA treatment significantly caused upregulation of autophagy-related protein LC3-II and induced GFP-LC3 puncta formation. Furthermore, cotreatment with PCA and autophagy inhibitor attenuated the cytotoxicity induced by PCA in OVCAR-3 cells. Moreover, our results showed that PCA increased the intracellular levels of glutathione and decreased intracellular reactive oxygen species that might be related to the inhibition effect of PCA on OVCAR-3 cells. Our data revealed that PCA could modulate apoptosis and autophagy, suggesting the potential of PCA for chemoprevention and chemotherapy of ovarian cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.6163DOI Listing

Publication Analysis

Top Keywords

ovcar-3 cells
16
ovarian cancer
12
pca treatment
12
pca
10
protocatechuic acid
8
apoptosis autophagy
8
pca ovcar-3
8
cells
6
ovcar-3
5
acid inhibits
4

Similar Publications

The aim of this study was to determine the effect of Sparstolonin B (SsnB) on cell proliferation and apoptosis in human breast cancer (MCF-7) and human ovarian epithelial cancer (OVCAR-3) cell lines in the presence and absence of estradiol hemihydrate (ES). Phosphoinositol-3 kinase (PI3K), phosphorylated protein kinase B alpha (p-AKT), phosphorylated mTOR (mechanistic target of rapamycin) signaling proteins, and sphingomyelin/ceramide metabolites were also measured within the scope of the study. The anti-proliferative effects of SsnB therapy were evaluated over a range of times and concentrations.

View Article and Find Full Text PDF

As novel promising anticancer candidates, the piano-stool type complexes of ruthenium, [RuCl(η-p-cymene)(N,S-L)]PF, K-, were synthesized from the reaction of the substituted benzo[b]thiophene based thiosemicarbazone ligands (L) with [{RuCl(η-p-cymene)}(μ-Cl)]. All complexes were fully characterized using elemental analysis, and spectroscopic methods such as FT-IR and H NMR. The molecular masses of the complexes were proved by MALDI-TOF analysis.

View Article and Find Full Text PDF

LncRNA DNM1P35 sponges hsa-mir-326 to promote ovarian cancer progression.

Sci Rep

December 2024

Department of Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University/Wuxi Medical Center, Nanjing Medical University/Wuxi People's Hospital, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.

Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in cancer progression. We found lncRNA DNM1P35 is elevated in ovarian tumors compared to normal tissues, and demonstrated that lncRNA DNM1P35 promoted cancer cell proliferation, migration and invasion in SK-OV-3 and OVCAR-3 cell lines. Furthermore, lncRNA DNM1P35 also facilitated the epithelial-mesenchymal transition (EMT) of ovarian cancer cells.

View Article and Find Full Text PDF

The overexpression of Kruppel-like factor 5 (KLF5) appears in several types of cancer. KLF5 may be an effective therapeutic target for treating OC, but its function in ovarian cancer (OC) remains unknown. The KLF5 mRNA expression levels in several OC cell lines were analyzed using RT-qPCR.

View Article and Find Full Text PDF

The effects of ligand distribution and density on the targeting properties of dual-targeting folate/biotin Pluronic F127/Poly (lactic acid) polymersomes.

Eur J Pharm Biopharm

January 2025

School of Life Science, Jiangxi Science and Technology Normal University, Jiangxi Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Nanchang 330013, China. Electronic address:

Article Synopsis
  • Dual-targeting polymersomes with biotin and folic acid were designed to improve targeting and anti-tumor effects in human ovarian cancer cells (OVCAR-3) compared to single-ligand systems.
  • Two types of polymersomes were tested: one with both ligands in the same polymersome (BT/FA-F127-PLA) and one with ligands in separate polymersomes ((BT + FA)-F127-PLA), with the former showing better cell targeting and drug delivery results.
  • The study found that effective cellular targeting is influenced by the ligands' ratio and the mechanisms of endocytosis, with optimal targeting achieved at a 7.5% biotin to 7.5%
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!