Protocatechuic acid (PCA), present in many fruits and vegetables, exhibited various biological activities. Here, we provided evidence that it could be developed as a potential chemotherapeutic agent against human ovarian cancer. We found that PCA treatment significantly reduced the cell viability and colony formation of OVCAR-3, SKOV-3, and A2780 cells. OVCAR-3 cells were selected as a test model system for investigating molecular mechanism. PCA treatment induced cell cycle arrest in G /M phase, the activation of poly (ADP-ribose) polymerase (PARP) and caspase-3, the upregulation of Bax and downregulation of Bcl-2 in OVCAR-3 cells. We also observed that PCA treatment significantly caused upregulation of autophagy-related protein LC3-II and induced GFP-LC3 puncta formation. Furthermore, cotreatment with PCA and autophagy inhibitor attenuated the cytotoxicity induced by PCA in OVCAR-3 cells. Moreover, our results showed that PCA increased the intracellular levels of glutathione and decreased intracellular reactive oxygen species that might be related to the inhibition effect of PCA on OVCAR-3 cells. Our data revealed that PCA could modulate apoptosis and autophagy, suggesting the potential of PCA for chemoprevention and chemotherapy of ovarian cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ptr.6163 | DOI Listing |
Pharmaceuticals (Basel)
November 2024
Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey.
The aim of this study was to determine the effect of Sparstolonin B (SsnB) on cell proliferation and apoptosis in human breast cancer (MCF-7) and human ovarian epithelial cancer (OVCAR-3) cell lines in the presence and absence of estradiol hemihydrate (ES). Phosphoinositol-3 kinase (PI3K), phosphorylated protein kinase B alpha (p-AKT), phosphorylated mTOR (mechanistic target of rapamycin) signaling proteins, and sphingomyelin/ceramide metabolites were also measured within the scope of the study. The anti-proliferative effects of SsnB therapy were evaluated over a range of times and concentrations.
View Article and Find Full Text PDFJ Biol Inorg Chem
December 2024
Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340, Izmir, Turkey.
As novel promising anticancer candidates, the piano-stool type complexes of ruthenium, [RuCl(η-p-cymene)(N,S-L)]PF, K-, were synthesized from the reaction of the substituted benzo[b]thiophene based thiosemicarbazone ligands (L) with [{RuCl(η-p-cymene)}(μ-Cl)]. All complexes were fully characterized using elemental analysis, and spectroscopic methods such as FT-IR and H NMR. The molecular masses of the complexes were proved by MALDI-TOF analysis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Gynaecology, The Affiliated Wuxi People's Hospital of Nanjing Medical University/Wuxi Medical Center, Nanjing Medical University/Wuxi People's Hospital, 299 Qingyang Road, Wuxi, 214023, Jiangsu, China.
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in cancer progression. We found lncRNA DNM1P35 is elevated in ovarian tumors compared to normal tissues, and demonstrated that lncRNA DNM1P35 promoted cancer cell proliferation, migration and invasion in SK-OV-3 and OVCAR-3 cell lines. Furthermore, lncRNA DNM1P35 also facilitated the epithelial-mesenchymal transition (EMT) of ovarian cancer cells.
View Article and Find Full Text PDF3 Biotech
January 2025
Department of Gynaecology, The Fifth People's Hospital of Qinghai Province, No.166, Nanshan East Road, Chengdong District, Xining, 810007 Qinghai China.
The overexpression of Kruppel-like factor 5 (KLF5) appears in several types of cancer. KLF5 may be an effective therapeutic target for treating OC, but its function in ovarian cancer (OC) remains unknown. The KLF5 mRNA expression levels in several OC cell lines were analyzed using RT-qPCR.
View Article and Find Full Text PDFEur J Pharm Biopharm
January 2025
School of Life Science, Jiangxi Science and Technology Normal University, Jiangxi Key Laboratory of Natural Microbial Medicine Research, Key Laboratory of Microbial Resources and Metabolism of Nanchang City, Nanchang 330013, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!