Seventeen base pairs of DNA from SV40 origin region I encode a tripartite binding site for a dimeric mass of SV40 large T antigen. Two binding components are the directly repeated pentanucleotide sequences 5'-GAGGC-3'/5'-GCCTC-3'. The third component is the asymmetric sequence 5'-TTTTTTG-3'/5'-CAAAAAA-3' that separates the pentanucleotides. Nucleotide-specific features of this spacer element stabilize binding to the adjacent pentanucleotides. We report here that the spacer sequence determines a DNA conformation that correlates with high affinity binding of T antigen. The nature of the spacer sequence suggests that the DNA is bent. We propose that binding of T antigen to region I proceeds through monomer-pentanucleotide interactions and either protein-protein or protein-spacer interactions directed by the spacer-encoded structure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0092-8674(86)90838-xDOI Listing

Publication Analysis

Top Keywords

dna conformation
8
origin region
8
sv40 large
8
large antigen
8
spacer sequence
8
binding antigen
8
binding
6
altered dna
4
conformation origin
4
region determinant
4

Similar Publications

The LutR protein represses the transcription of genes encoding enzymes for the utilization of l-lactate in through binding to a specific DNA region. In this study, we employed oligonucleotide probes modified by viscosity-sensitive tetramethylated thiophene-BODIPY fluorophores to investigate the impact of selected metabolites on the LutR-DNA complex. Our goal was to identify the effector molecule whose binding alters the protein-DNA affinity, thereby enabling gene transcription.

View Article and Find Full Text PDF

FRET analysis of the unwrapping of nucleosomal DNA containing a sequence characteristic of the + 1 nucleosome.

Sci Rep

January 2025

Molecular Modeling and Simulation Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4-9-1, Anagawa, Inage-Ku, Chiba City, Chiba, 263-8555, Japan.

Sequence-dependent mechanical properties of DNA could play essential roles in nuclear processes by affecting histone-DNA interactions. Previously, we found that the DNA entry site of the first nucleosomes from the transcription start site (+ 1 nucleosome) in budding yeast enriches AA/TT steps, but not the exit site, and the biased presence of AA/TT in the entry site was associated with the transcription levels of yeast genes. Because AA/TT is a rigid dinucleotide step, we considered that AA/TT causes DNA unwrapping.

View Article and Find Full Text PDF

A DNA phosphorothioation pathway via adenylated intermediate modulates Tdp machinery.

Nat Chem Biol

January 2025

Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.

In prokaryotes, the non-bridging oxygen in the DNA sugar-phosphate backbone can be enzymatically replaced by a sulfur atom, resulting in phosphorothioate (PT) modification. However, the mechanism underlying the oxygen-to-sulfur substitution remains enigmatic. In this study, we discovered a hypercompact DNA phosphorothioation system, TdpABC, in extreme thermophiles.

View Article and Find Full Text PDF

i-Motifs (iMs) are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence.

View Article and Find Full Text PDF

G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication.

Commun Biol

January 2025

Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.

Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!