Myelodysplastic Syndrome, Acute Myeloid Leukemia, and Cancer Surveillance in Fanconi Anemia.

Hematol Oncol Clin North Am

Department of Medicine, Division of Solid Tumor, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA; Department of Medicine, Division of Clinical Cancer Genetics, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA; Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 222 70th Street Room 412, New York, NY 10021, USA. Electronic address:

Published: August 2018

Fanconi anemia (FA) is a DNA repair disorder associated with a high risk of cancer and bone marrow failure. Patients with FA may present with certain dysmorphic features, such as radial ray abnormalities, short stature, typical facies, bone marrow failure, or certain solid malignancies. Some patients may be recognized due to exquisite sensitivity after exposure to cancer therapy. FA is diagnosed by increased chromosomal breakage after exposure to clastogenic agents. It follows autosomal recessive and X-linked inheritance depending on the underlying genomic alterations. Recognizing patients with FA is important for therapeutic decisions, genetic counseling, and optimal clinical management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071325PMC
http://dx.doi.org/10.1016/j.hoc.2018.04.002DOI Listing

Publication Analysis

Top Keywords

fanconi anemia
8
bone marrow
8
marrow failure
8
myelodysplastic syndrome
4
syndrome acute
4
acute myeloid
4
myeloid leukemia
4
leukemia cancer
4
cancer surveillance
4
surveillance fanconi
4

Similar Publications

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

USP1 in regulation of DNA repair pathways.

DNA Repair (Amst)

January 2025

School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland. Electronic address:

Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves.

View Article and Find Full Text PDF

Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.

View Article and Find Full Text PDF

Inhibition of DEK restores hematopoietic stem cell function in Fanconi anemia.

J Exp Med

March 2025

Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.

Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!