Genotypic and Phenotypic Assays to Distinguish Vibrio cholerae Biotype.

Methods Mol Biol

Department of Biological Sciences, Plymouth State University, Plymouth, NH, USA.

Published: April 2019

Vibrio cholerae is a motile gram-negative bacterium found in brackish water and the etiological agent of the fecal-oral disease cholera. Classical and El Tor are two main biotypes that make up the V. cholerae O1 serogroup, which each display unique genotypic and phenotypic characteristics that allow for reliable biotype characterization. While treatment for cholera is much the same despite the causative strain's biotype, such classification can be imperative for laboratory experiments and may have broader impacts in the biomedical field. In the early 2000s, clinical isolates were identified that contained genotypic and phenotypic traits from both biotypes. The newly identified hybrids, termed El Tor variants, have caused clinical and environmental isolate biotype identification to be more complicated than previous single-assay identification. Herein, we describe a series of PCR-based genetic screens (tcpA and ctxB) and phenotypic assays (polymyxin B resistance, citrate metabolism, proteolytic activity, hemolytic activity, motility, and Voges-Proskauer). Together, these assays are used for reliable biotype characterization of V. cholerae clinical (and environmental) isolates.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-8685-9_2DOI Listing

Publication Analysis

Top Keywords

genotypic phenotypic
12
phenotypic assays
8
vibrio cholerae
8
reliable biotype
8
biotype characterization
8
clinical environmental
8
biotype
5
assays distinguish
4
distinguish vibrio
4
cholerae
4

Similar Publications

Informing etiological heterogeneity of mild cognitive impairment and risk for progression to dementia with plasma p-tau217.

J Prev Alzheimers Dis

January 2025

1Florida Alzheimer's Disease Research Center, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA.

Background: Mild cognitive impairment (MCI) is a clinical diagnosis representing early symptom changes with preserved functional independence. There are multiple potential etiologies of MCI. While often presumed to be related to Alzheimer's disease (AD), other neurodegenerative and non-neurodegenerative causes are common.

View Article and Find Full Text PDF

Background: Fibrous dysplasia (FD), caused by activating mutations of GNAS, is a skeletal disorder with considerable clinicopathological heterogeneity. Although prevalent mutations such as R201C and R201H dominate in FD, a limited number of rare mutations, including R201S, R201G, and Q227L, have been documented. The scarcity of information concerning these uncommon mutations motivates our investigation, seeking to enhance comprehension of this less-explored subgroup within FD.

View Article and Find Full Text PDF

Genotypic and phenotypic diversity of Mycobacterium tuberculosis strains from eastern India.

Infect Genet Evol

January 2025

Immunogenomics & Systems Biology group, Institute of Life Sciences (ILS), Bhubaneswar, Odisha, India; School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India. Electronic address:

Whole genome sequencing has been used to investigate the genomic diversity of M. tuberculosis in the northern and southern states of India, but information about the eastern part of the country is still limited. Through a sequencing-based strategy, this study seeks to comprehend the diversity and drug resistance pattern in the eastern region.

View Article and Find Full Text PDF

Background: Citrin deficiency (CD) is an autosomal recessive metabolic disorder affecting the urea cycle and energy production. Diagnosis involves measuring ammonia, amino acid levels (eg: citrulline), with confirmation through solute carrier family 25 member 13 (SLC25A13) gene mutation analysis. Herein, we present a case report of a variant in the SLC25A13 gene that has not been previously reported in the literature.

View Article and Find Full Text PDF

Mannheimia haemolytica is one of the most common causative agents of bovine respiratory disease (BRD); however, antibiotic resistance in this species is increasing, making treatment more difficult. Integrative-conjugative elements (ICE), a subset of mobile genetic elements (MGE), encoding up to 100 genes have been reported in Mannheimia haemolytica genomes to confer multidrug resistance, including resistance to antibiotics commonly used in the treatment of BRD. However, the presence of antibiotic resistance genes (ARGs) does not always agree with phenotypic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!