Type II fatty acid and polyketide synthases: deciphering protein-protein and protein-substrate interactions.

Nat Prod Rep

Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.

Published: October 2018

Covering: up to April 5, 2018 Metabolites from type II fatty acid synthase (FAS) and polyketide synthase (PKS) pathways differ broadly in their identities and functional roles. The former are considered primary metabolites that are linear hydrocarbon acids, while the latter are complex aromatic or polyunsaturated secondary metabolites. Though the study of bacterial FAS has benefitted from decades of biochemical and structural investigations, type II PKSs have remained less understood. Here we review the recent approaches to understanding the protein-protein and protein-substrate interactions in these pathways, with an emphasis on recent chemical biology and structural applications. New approaches to the study of FAS have highlighted the critical role of the acyl carrier protein (ACP) with regard to how it stabilizes intermediates through sequestration and selectively delivers cargo to successive enzymes within these iterative pathways, utilizing protein-protein interactions to guide and organize enzymatic timing and specificity. Recent tools that have shown promise in FAS elucidation should find new approaches to studying type II PKS systems in the coming years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233901PMC
http://dx.doi.org/10.1039/c8np00040aDOI Listing

Publication Analysis

Top Keywords

type fatty
8
fatty acid
8
protein-protein protein-substrate
8
protein-substrate interactions
8
type
4
acid polyketide
4
polyketide synthases
4
synthases deciphering
4
deciphering protein-protein
4
interactions covering
4

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.

View Article and Find Full Text PDF

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Background: While there are numerous benefits to tea consumption, its long-term impact on patients with chronic kidney disease (CKD) remains unclear.

Method: Our analysis included 17,575 individuals with CKD from an initial 45,019 participants in the National Health and Nutrition Examination Survey (NHANES) (1999-2018). Individuals with extreme dietary habits, pregnancy, or non-CKD conditions were excluded.

View Article and Find Full Text PDF

Introduction: Metabolic disorders (type 2 diabetes, insulin resistance, hyperglycaemia, obesity, hyperlipidaemia, hypertension, non-alcoholic fatty liver disease and metabolic syndrome) are leading causes of mortality and disability worldwide. These disorders disproportionately affect older adults relative to those younger. Digital health technologies (DHTs), such as patient monitoring, digital diagnostics and digital therapeutics, emerge as promising tools for health promotion in day-to-day life.

View Article and Find Full Text PDF

Aims: To compare the effects of ipragliflozin, a sodium-dependent glucose transporter-2 inhibitor, and those of metformin on the visceral fat area (VFA), a prospective, multi-centre, open-label, blinded-endpoint, randomized, controlled study was undertaken. The generated data were used to examine the effects of ipragliflozin and metformin on indices of hepatic steatosis and liver fibrosis.

Materials And Methods: In total, 103 Japanese patients with type-2 diabetes (T2D), body mass index (BMI) of ≥22 kg/m and glycated haemoglobin level of 7%-10% were randomly administered ipragliflozin 50 mg or metformin 1000 mg for 24 weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!