Glioblastoma multiforme (GBM) is one of the most common and deadliest cancers of the central nervous system (CNS). GBMs high ability to infiltrate healthy brain tissues makes it difficult to remove surgically and account for its fatal outcomes. To improve the chances of survival, it is critical to screen for GBM-targeted anticancer agents with anti-invasive and antimigratory potential. Metformin, a commonly used drug for the treatment of diabetes, has recently emerged as a promising anticancer molecule. This prompted us, to investigate the anticancer potential of metformin against GBMs, specifically its effects on cell motility and invasion. The results show a significant decrease in the survival of SF268 cancer cells in response to treatment with metformin. Furthermore, metformin's efficiency in inhibiting 2D cell motility and cell invasion in addition to increasing cellular adhesion was also demonstrated in SF268 and U87 cells. Finally, AKT inactivation by downregulation of the phosphorylation level upon metformin treatment was also evidenced. In conclusion, this study provides insights into the anti-invasive antimetastatic potential of metformin as well as its underlying mechanism of action.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038689PMC
http://dx.doi.org/10.1155/2018/5917470DOI Listing

Publication Analysis

Top Keywords

potential metformin
12
metformin treatment
8
motility invasion
8
cancer cells
8
cell motility
8
metformin
6
treatment inhibits
4
inhibits motility
4
invasion glioblastoma
4
glioblastoma cancer
4

Similar Publications

Sodium-glucose co-transporter 2 inhibitors, such as enavogliflozin, offer promising metabolic benefits for patients with type 2 diabetes (T2D), including glycemic control and improved cardiac function. Despite the clinical evidence, real-world evidence is needed to validate their safety and effectiveness. This study aims to evaluate the effects of weight loss and safety of enavogliflozin administration in patients with T2D in a real-world clinical setting over 24 weeks.

View Article and Find Full Text PDF

Background: In the Kazakh community of Xinjiang, China, fermented camel milk has been traditionally used to manage diabetes. This study evaluates the effects of composite probiotics derived from fermented camel milk (CPCM) on metabolic disturbances in a rat model of Type 2 diabetes (T2DM).

Methods: T2DM was induced in Wistar rats using streptozotocin.

View Article and Find Full Text PDF

Background: Although post-transplant diabetes mellitus (PTDM) is a common complication after kidney transplantation, there are few data on prevention, optimal screening, and treatment strategies.

Methods: The European Renal Association's DESCARTES working group distributed a web-based survey to European transplant centres to gather information on risk assessment, screening procedures, and management practices for preventing and treating PTDM in kidney transplant recipients.

Results: Answers were obtained from 121/241 transplant centres (50%) across 15 European countries.

View Article and Find Full Text PDF

Background: In May 2020, the US Food and Drug Administration (FDA) asked 5 pharmaceutical companies to voluntarily recall some formulations of metformin due to contamination. This observational study sought to provide insight changes in hemoglobin A (HbA) levels when veterans switched to alternative antihyperglycemic agents following the recall.

Methods: This study included veterans aged ≥ 18 years with type 2 diabetes who were receiving health care from Veterans Integrated Service Network 6 and had an active metformin sustained-action (SA) prescription as of June 1, 2020.

View Article and Find Full Text PDF

Fabrication of a Redox-Reversible Near-Infrared Fluorogenic Probe for Ferroptosis Process Monitoring and the Early Diagnosis of Diabetes.

Anal Chem

January 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, China.

Ferroptosis is a type of cell death triggered by the iron-dependent accumulation of lipid peroxides in cells. Diabetes, a chronic metabolic disorder characterized by hyperglycemia, can lead to various health complications. The process of ferroptosis and the progression of diabetes are closely linked to redox homeostasis, which is regulated by the levels of reactive oxygen and sulfur species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!