Rheumatoid arthritis (RA) is a painful chronic autoimmune disease affecting the joints. Its first-line therapy, Methotrexate (MTX), although effective in ameliorating the progress of the disease, induces hepatotoxicity over long-term usage. Thus, seeking natural compounds with fewer side effects could be an alternative therapeutic approach. This study aimed to investigate the anti-inflammatory, antiarthritic, and antioxidative effects of synthetic -Δ9-tetrahydrocannabinol (Δ9-THC) dissolved in sesame oil (Dronabinol) against MTX in adjuvant-induced arthritis (AIA) rat model. Daily oral administration of Δ9-THC/sesame oil, over a period of 21 days, was well tolerated in arthritic rats with no particular psychoactive side effects. It markedly attenuated the severity of clinical manifestations, recovered the histopathological changes in tibiotarsal joints, and repressed the splenomegaly in arthritic rats. Δ9-THC/sesame oil therapy showed similar effects to MTX in neutralizing the inflammatory process of AIA, through attenuating erythrocyte sedimentation rate (ESR) scores and proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-), interleukin 1-beta (IL-1), and interleukin-6 (IL-6) levels, to normal values. As opposed to MTX, this natural combination markedly protected the liver of arthritic rats and downregulated the induced oxidative stress by increasing the antioxidant defense system such as activities of catalase and superoxide dismutase (SOD) and levels of glutathione (GSH). These results suggest promising effects for the clinical use of Δ9-THC/sesame oil therapy in alleviating arthritic clinical signs as well as arthritis-induced liver injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6036806PMC
http://dx.doi.org/10.1155/2018/9365464DOI Listing

Publication Analysis

Top Keywords

Δ9-thc/sesame oil
12
arthritic rats
12
adjuvant-induced arthritis
8
side effects
8
oil therapy
8
effects
6
oil
5
anti-inflammatory antioxidative
4
antioxidative hepatoprotective
4
hepatoprotective effects
4

Similar Publications

Sesamol is a significant lignan in sesame oil, which can be converted from sesamolin under acid-catalyzed conditions. The effects of several factors on the conversion of sesamolin to sesamol under acid-catalyzed conditions were investigated. The conversion kinetics were studied and the relevant conversion mechanism was revealed by density functional theory (DFT).

View Article and Find Full Text PDF

The process of micromachining has garnered attention for its ability to create three-dimensional tiny features, particularly in ultra-hard and exotic materials. The present work investigates the effect of different parameters of the µ-ED milling, such as pulse on time (Ton), pulse off time (Toff), voltage (V), and tool rotation (TR) on the dimensional deviation (DD), material removal rate (MRR), surface roughness (Ra), and machined surface characteristics (analysed by EDS and FESEM). The sesame oil as dielectric and tungsten-copper as tool electrodes were used to maintain the accuracy and improve the machinability of bio-grade Nitinol SMA.

View Article and Find Full Text PDF

Sesame (Sesamum indicum L., 2n = 2× = 26) from the Pedaliaceae family is primarily grown for its high oil content, rich in unsaturated fatty acids like linoleic acid (LA) and alpha-linolenic acid (ALA). However, the molecular mechanisms of sesame oil accumulation remain poorly understood.

View Article and Find Full Text PDF

Seed cycling therapy (SCT) involves the consumption of specific seeds during the follicular and luteal phases of the menstrual cycle to help balance reproductive hormones. This study aimed to investigate the effects of SCT on healthy female Wistar albino rats to prevent hormonal imbalances. For SCT, a seed mixture (SM1) consisting of flax, pumpkin, and soybeans (estrogenic seeds) was administered at doses of 5.

View Article and Find Full Text PDF

Extraction and characterization of spherical nanocellulose from sesame husks.

Heliyon

January 2025

Department of Food Engineering Technologies, Faculty of Technical Engineering, Aleppo University, Syria.

The objective of this study was to extract and characterize nanocellulose from sesame husks, which are typically discarded as waste by sesame processing facilities. However, these husks are rich in cellulose, presenting a valuable potential source for nanocellulose. Sesame husk cellulose (SHC) was initially isolated through a multi-step process that removed oil, hemicellulose, and lignin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!