Devices that rely on the manipulation of excitons-bound pairs of electrons and holes-hold great promise for realizing efficient interconnects between optical data transmission and electrical processing systems. Although exciton-based transistor actions have been demonstrated successfully in bulk semiconductor-based coupled quantum wells, the low temperature required for their operation limits their practical application. The recent emergence of two-dimensional semiconductors with large exciton binding energies may lead to excitonic devices and circuits that operate at room temperature. Whereas individual two-dimensional materials have short exciton diffusion lengths, the spatial separation of electrons and holes in different layers in heterostructures could help to overcome this limitation and enable room-temperature operation of mesoscale devices. Here we report excitonic devices made of MoS-WSe van der Waals heterostructures encapsulated in hexagonal boron nitride that demonstrate electrically controlled transistor actions at room temperature. The long-lived nature of the interlayer excitons in our device results in them diffusing over a distance of five micrometres. Within our device, we further demonstrate the ability to manipulate exciton dynamics by creating electrically reconfigurable confining and repulsive potentials for the exciton flux. Our results make a strong case for integrating two-dimensional materials in future excitonic devices to enable operation at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0357-yDOI Listing

Publication Analysis

Top Keywords

excitonic devices
12
room temperature
12
exciton flux
8
van der
8
der waals
8
transistor actions
8
two-dimensional materials
8
exciton
5
devices
5
room-temperature electrical
4

Similar Publications

Raman and Photoluminescence Studies of Quasiparticles in van der Waals Materials.

Nanomaterials (Basel)

January 2025

Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China.

Two-dimensional (2D) layered materials have received much attention due to the unique properties stemming from their van der Waals (vdW) interactions, quantum confinement, and many-body interactions of quasi-particles, which drive their exotic optical and electronic properties, making them critical in many applications. Here, we review our past years' findings, focusing on many-body interactions in 2D layered materials, including phonon anharmonicity, electron-phonon coupling (), exciton dynamics, and phonon anisotropy based on temperature (polarization)-dependent Raman spectroscopy and Photoluminescence (PL). Our review sheds light on the role of quasi-particles in tuning the material properties, which could help optimize 2D materials for future applications in electronic and optoelectronic devices.

View Article and Find Full Text PDF

Quasi-two-dimensional (quasi-2D) mixed-halide perovskites are a requisite for their applications in highly efficient blue perovskite light-emitting diodes (PeLEDs) owing to their strong quantum confinement effect and high exciton binding energy. The pace of quasi-2D blue PeLEDs is hindered primarily by two factors: challenges in precisely managing the phase distribution and defect-mediated nonradiative recombination losses. Herein, we utilize 2,2-diphenylethylamine (DPEA) with bulky steric hindrance to disturb the assembly process of a slender spacer host cation, 4-fluorophenylethylammonium (-F-PEA), enhancing phase distribution management in quasi-2D PeLEDs.

View Article and Find Full Text PDF

Modulation of singlet and triplet energy transfer from excited semiconductor nanocrystals to attached dye molecules remains an important criterion for the design of light-harvesting assemblies. Whereas one can consider the selection of donor and acceptor with favorable energetics, spectral overlap, and kinetics of energy transfer as a means to direct the singlet and triplet energy transfer pathways, it is not obvious how to control the singlet and triplet characteristics of the donor semiconductor nanocrystal itself. By doping CsPb(ClBr) nanocrystals with Mn, we have now succeeded in increasing the triplet characteristics of semiconductor nanocrystals.

View Article and Find Full Text PDF

Enhanced Spontaneous Emission Rate and Luminescence Intensity of CsPbBr Quantum Dots Using a High- Microdisk Cavity.

J Phys Chem Lett

January 2025

State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.

Perovskite quantum dots (QDs) are high-efficiency optoelectronic materials attracting great interest, but further improvement in the luminescence efficiency is crucial for their application. In this work, we enhance both the spontaneous emission rate and the photoluminescence (PL) intensity of CsPbBr QDs by coupling them to a high quality () factor SiO microdisk cavity. Compared to conventional metal plasmonic cavities, the dielectric cavity structure suppresses the effects of quenching and energy transfer, which could introduce complex fluctuations and nonradiative decays.

View Article and Find Full Text PDF

Thiophene Copolymer Donors Containing Ester-Substituted Thiazole for Organic Solar Cells.

ACS Appl Mater Interfaces

January 2025

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.

Organic solar cells have seen significant progress in the past 2 decades with power conversion efficiencies (PCEs) exceeding 20% but mostly based on high-cost photovoltaic materials. Polythiophenes (PTs) without a fused-ring structure are good candidates as low-cost donor materials, deserving more attention for studying. In this work, ester-substituted thiazole (E-Tz) was explored as the electron-withdrawing unit to design PTs, and further optimization on the fluorinated/nonfluorinated donor segment contents via copolymerization strategy was simultaneously performed, yielding polymer donors of PTETz-100F, PTETz-80F, and PTETz-0F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!