AI Article Synopsis

Article Abstract

The decay of an excited atom undergoing spontaneous photon emission into the fluctuating quantum-electrodynamic vacuum is an emblematic  example of the dynamics of an open quantum system. Recent experiments have demonstrated that the gapped photon dispersion in periodic structures, which prevents photons in certain frequency ranges from propagating, can give rise to unusual spontaneous-decay behaviour, including the formation of dissipative bound states. So far, these effects have been restricted to the optical domain. Here we demonstrate similar behaviour in a system of artificial emitters, realized using ultracold atoms in an optical lattice, which decay by emitting matter-wave, rather than optical, radiation into free space. By controlling vacuum coupling and the excitation energy, we directly observe exponential and partly reversible non-Markovian dynamics and detect a tunable bound state that contains evanescent matter waves. Our system provides a flexible platform for simulating open-system quantum electrodynamics and for studying dissipative many-body physics with ultracold atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-018-0348-zDOI Listing

Publication Analysis

Top Keywords

matter waves
8
quantum system
8
ultracold atoms
8
spontaneous emission
4
emission matter
4
waves tunable open
4
tunable open quantum
4
system
4
system decay
4
decay excited
4

Similar Publications

In ordered magnets, the elementary excitations are spin waves (magnons), which obey Bose-Einstein statistics. Similarly to Cooper pairs in superconductors, magnons can be paired into bound states under attractive interactions. The Zeeman coupling to a magnetic field is able to tune the particle density through a quantum critical point, beyond which a 'hidden order' is predicted to exist.

View Article and Find Full Text PDF

Particulate matter, socioeconomic status, and cognitive function among older adults in China.

Arch Gerontol Geriatr

January 2025

Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 12 Science Drive 2, Singapore 117549, Singapore. Electronic address:

Background: Both air pollution and low socioeconomic status (SES) are associated with worse cognitive function. The extent to which low SES may compound the adverse effect of air pollution on cognitive function remains unclear.

Methods: 7,087 older adults aged 65 and above were included from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) and followed up in 4 waves during 2008-2018.

View Article and Find Full Text PDF

Background: Results of the National Lung Screening Trial create the potential to reduce lung cancer mortality, but community translation of lung cancer screening (LCS) has been challenging. Subsequent policies have endorsed informed and shared decision-making and using decision support tools to support person-centered choices about screening to facilitate implementation. This study evaluated the feasibility and acceptability of LuCaS CHOICES, a web-based decision aid to support delivery of accurate information, facilitate communication skill development, and clarify personal preferences regarding LCS-a key component of high-quality LCS implementation.

View Article and Find Full Text PDF

Activity waves in condensed excitable phases of Quincke rollers.

Soft Matter

January 2025

Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.

Traveling waves are universal in excitable systems; yet, the microscopic dynamics of wave propagation is inaccessible in conventional excitable systems. Here, we show that active colloids of Quincke rollers driven by a periodic electric field can form condensed excitable phases. Distinct from existing excitable media, condensed excitable colloids can be tuned reversibly between active liquids and active crystals in which two distinct waves can be excited, respectively.

View Article and Find Full Text PDF

Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.

Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!