Widespread anti-CRISPR proteins in virulent bacteriophages inhibit a range of Cas9 proteins.

Nat Commun

Département de biochimie, de microbiologie, et de bioinformatique, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, QC, G1V 0A6, Canada.

Published: July 2018

CRISPR-Cas systems are bacterial anti-viral systems, and bacterial viruses (bacteriophages, phages) can carry anti-CRISPR (Acr) proteins to evade that immunity. Acrs can also fine-tune the activity of CRISPR-based genome-editing tools. While Acrs are prevalent in phages capable of lying dormant in a CRISPR-carrying host, their orthologs have been observed only infrequently in virulent phages. Here we identify AcrIIA6, an Acr encoded in 33% of virulent Streptococcus thermophilus phage genomes. The X-ray structure of AcrIIA6 displays some features unique to this Acr family. We compare the activity of AcrIIA6 to those of other Acrs, including AcrIIA5 (also from S. thermophilus phages), and characterize their effectiveness against a range of CRISPR-Cas systems. Finally, we demonstrate that both Acr families from S. thermophilus phages inhibit Cas9-mediated genome editing of human cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6060171PMC
http://dx.doi.org/10.1038/s41467-018-05092-wDOI Listing

Publication Analysis

Top Keywords

crispr-cas systems
8
systems bacterial
8
thermophilus phages
8
phages
5
widespread anti-crispr
4
anti-crispr proteins
4
proteins virulent
4
virulent bacteriophages
4
bacteriophages inhibit
4
inhibit range
4

Similar Publications

Programmable and modular systems capable of orthogonal genomic and transcriptomic perturbations are crucial for biological research and treating human genetic diseases. Here, we present the minimal versatile genetic perturbation technology (mvGPT), a flexible toolkit designed for simultaneous and orthogonal gene editing, activation, and repression in human cells. The mvGPT combines an engineered compact prime editor (PE), a fusion activator MS2-p65-HSF1 (MPH), and a drive-and-process multiplex array that produces RNAs tailored to different types of genetic perturbation.

View Article and Find Full Text PDF

Structural insights into how Cas9 targets nucleosomes.

Nat Commun

December 2024

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.

The CRISPR-associated endonuclease Cas9 derived from prokaryotes is used as a genome editing, which targets specific genomic loci by single guide RNAs (sgRNAs). The eukaryotes, the target of genome editing, store their genome DNA in chromatin, in which the nucleosome is a basic unit. Despite previous structural analyses focusing on Cas9 cleaving free DNA, structural insights into Cas9 targeting of DNA within nucleosomes are limited, leading to uncertainties in understanding how Cas9 operates in the eukaryotic genome.

View Article and Find Full Text PDF

Robust and inducible genome editing via an all-in-one prime editor in human pluripotent stem cells.

Nat Commun

December 2024

The SKI Stem Cell Research Facility, The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA.

Prime editing (PE) allows for precise genome editing in human pluripotent stem cells (hPSCs), such as introducing single nucleotide modifications, small insertions or deletions at a specific genomic locus. Here, we systematically compare a panel of prime editing conditions in hPSCs and generate a potent prime editor, "PE-Plus", through co-inhibition of mismatch repair and p53-mediated cellular stress responses. We further establish an inducible prime editing platform in hPSCs by incorporating the PE-Plus into a safe-harbor locus and demonstrated temporal control of precise editing in both hPSCs and differentiated cells.

View Article and Find Full Text PDF

Cas12e orthologs evolve variable structural elements to facilitate dsDNA cleavage.

Nat Commun

December 2024

Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.

Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.

View Article and Find Full Text PDF

Background: Pseudomonas putida KT2440, a non-pathogenic soil bacterium, is a key platform strain in synthetic biology and industrial applications due to its robustness and metabolic versatility. Various systems have been developed for genome editing in P. putida, including transposon modules, integrative plasmids, recombineering systems, and CRISPR/Cas systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!