Herpes simplex virus 1 (HSV-1)-mediated oncolytic therapy is an emerging cancer treatment modality with potential effectiveness against a variety of malignancies. To better understand the interaction of HSV-1 with neoplastic cells, we inoculated three-dimensional (3D) cultures of human uveal melanoma cells with HSV-1. 3D melanoma cultures were established by placing tumor cells on the surface of a Matrigel matrix, which was followed by the growth of tumor cells on the matrix surface and invasion of the Matrigel matrix by some tumor cells to form multicellular tumor spheroids within the matrix. When established 3D melanoma cultures were inoculated with HSV-1 by placing virus on the surface of cultures, virus infection caused extensive death of melanoma cells growing on the surface of the 3D matrix and significantly decreased the number of tumor cell spheroids within the matrix. However, HSV-1 infection did not lead to a complete destruction of tumor cells in the 3D cultures during a 17-day observation period and, surprisingly, HSV-1 infection promoted the growth of some melanoma cells within the matrix as determined by the significantly increased size of residual viable multicellular tumor spheroids in virus-inoculated 3D cultures at 17 days after virus inoculation. Acyclovir treatment inhibited HSV-1-induced tumor cell killing but did not block the virus infection-induced increase in spheroid size. These findings suggest that although HSV-1 oncolytic virotherapy may cause extensive tumor cell killing, it may also be associated with the unintended promotion of the growth of some tumor cells. Cancer cells are exposed to HSV-1 during oncolytic virotherapy with the intention of killing tumor cells. Our observations reported here suggest that potential dangers of HSV-1 oncolytic therapy include promotion of growth of some tumor cells. Furthermore, our findings raise the possibility that HSV-1 infection of neoplastic cells during natural infections or vaccinations may promote the growth of tumors. Our study indicates that HSV-1 infection of 3D tumor cell cultures provides an experimental platform in which mechanisms of HSV-1-mediated promotion of tumor cell growth can be effectively studied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6146807PMC
http://dx.doi.org/10.1128/JVI.00700-18DOI Listing

Publication Analysis

Top Keywords

tumor cells
32
tumor cell
20
hsv-1 infection
16
tumor
15
cells
14
melanoma cultures
12
melanoma cells
12
growth tumor
12
hsv-1 oncolytic
12
hsv-1
10

Similar Publications

A mitochondria-targeted iridium(III) complex-based sensor for endogenous GSH detection in living cells.

Analyst

January 2025

Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.

Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.

View Article and Find Full Text PDF

The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.

View Article and Find Full Text PDF

This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment.

View Article and Find Full Text PDF

Adaptive Immunity Determines the Cancer Treatment Outcome of Oncolytic Virus and Anti-PD-1.

Bull Math Biol

January 2025

Department of Mathematics, University of Manitoba, 340 UMSU University Centre, Winnipeg, MB, R3T 2N2, Canada.

The immune checkpoint inhibitor, anti-programmed death protein-1 (anti-PD-1), enhances adaptive immunity to kill tumor cells, and the oncolytic virus (OV) triggers innate immunity to clear the infected tumor cells. We create a mathematical model to investigate how the interaction between adaptive and innate immunities under OV and anti-PD-1 affects tumor reduction. For different immunity strength, we create the corresponding virtual baseline patients and cohort patients to decipher the major factors determining the treatment outcome.

View Article and Find Full Text PDF

Only a few human ovarian endometrioid carcinoma cell lines are currently available, partly due to the difficulty of establishing cell lines from low-grade cancers. Here, using a cell immortalization strategy consisting of i) inactivation of the p16-pRb pathway by constitutive expression of mutant cyclin-dependent kinase 4 (R24C) (CDK4) and cyclin D1, and ii) acquisition of telomerase reverse transcriptase (TERT) activity, we established a human ovarian endometrioid carcinoma cell line from a 46-year-old Japanese woman. That line, designated JFE-21, has proliferated continuously for over 6 months with a doubling time of ~ 55 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!