Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Microsorum pteropus is a fully or partially submerged Polypodiaceae fern that has been proven to be a potential Cd aquatic hyperaccumulator. Proteomic analysis was used in this study to investigate the resistance mechanisms of M. pteropus root and leaf tissues under Cd stress. M. pteropus plants were exposed to up to 500 μM Cd in hydroponics for 7 days. The plant can accumulate >4,000 mg/kg Cd in both root and leaf dry mass. Meanwhile, the proteins in roots and leaves in the 500 μM Cd treatment were separated and analyzed by proteomics. Eight proteins with altered expression in roots and twenty proteins with altered expression in leaves were identified using MALDI-TOF/TOF-MS (matrix-assisted laser desorption/ionization time of flight mass spectrometry) in this study. The proteins were involved in energy metabolism, antioxidant activity, cellular metabolism and protein metabolism. However, just three proteins were significantly differentially expressed in both tissues, and they were all involved in basal metabolism, indicating different resistance mechanisms between roots and leaves. Root tissues of M. pteropus mainly resist Cd damage by antioxidants and the enhancement of energy metabolism, while leaf tissues of M. pteropus mainly protect themselves by maintaining photosynthetic functions and the regulation of cellular metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.06.168 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!