The role of plant functional traits in understanding forest recovery in wet tropical secondary forests.

Sci Total Environ

Department of Environmental Science, Policy & Management, University of California, Berkeley, CA, USA.

Published: November 2018

Simultaneous measurement of plant functional traits and the regeneration environment should shed light on the plant-environment interactions and feedbacks as secondary forest regenerates. However, little of such work has been done in the wet tropics, and even fewer studies have examined soil nutrients. We investigated whether plant functional traits and environmental variables explain the varied recovery of secondary forests in Singapore. Our study plots included three primary forest plots and eight approximately 60-year-old secondary forest plots regenerating from intensive agricultural activities. Using 35 seedling quadrats, we asked: Q1) How do environmental variables explain the variation in seedling functional traits observed in primary and secondary forests? Q2) How do seedling traits, adult traits and environmental variables relate and explain variation in species richness and stem density in secondary forests? We found that both light and soil fertility explained the shifts in plants functional traits from poorly recovering secondary forests to primary forests. Poor forest regrowth was correlated with high soil aluminum levels and lower leaf nitrogen concentrations. Low nutrients and high aluminum saturation were also negatively correlated with seedling species richness, but not stem density, in the secondary forests. Forest recovery is probably slowed by positive feedback between slower nutrient returns from slow decaying litter and further recruitment of nutrient conserving species, as indicated by positive correlations among adult leaf CN ratio, litter depth, soil CN ratio and quadrat level CN ratio. Plant functional traits are indicative of the strategies of successful seedlings and do not necessarily relate to overall forest recovery. Hence, while some specialist plant species are able to accrue high nutrients on degraded soils with aluminum toxicity and low nutrients, species richness on these soils was poor. This underscores the need to concurrently measure environmental variables and plant traits when investigating the mechanisms driving changes during forest recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.05.397DOI Listing

Publication Analysis

Top Keywords

functional traits
24
plant functional
16
forest recovery
16
secondary forests
16
environmental variables
16
species richness
12
traits
9
forest
8
secondary
8
secondary forest
8

Similar Publications

Genomic sources from China are underrepresented in the population-specific reference database. We performed whole-genome sequencing or genome-wide genotyping on 1,207 individuals from four linguistically diverse groups (1,081 Sinitic, 56 Mongolic, 40 Turkic, and 30 Tibeto-Burman people) living in North China included in the 10K Chinese People Genomic Diversity Project (10K_CPGDP) to characterize the genetic architecture and adaptative history of ethnic groups in the Silk Road Region of China. We observed a population split between Northwest Chinese minorities (NWCMs) and Han Chinese since the Upper Paleolithic and later Neolithic genetic differentiation within NWCMs.

View Article and Find Full Text PDF

Radio frequency identification (RFID) technology and marker recognition algorithms can offer an efficient and non-intrusive means of tracking animal positions. As such, they have become important tools for invertebrate behavioral research. Both approaches require fixing a tag or marker to the study organism, and so it is useful to quantify the effects such procedures have on behavior before proceeding with further research.

View Article and Find Full Text PDF

Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.

View Article and Find Full Text PDF

Trade-Offs Between Hydraulic Efficiency and Safety in Cotton ( L.) Stems Under Elevated CO and Salt Stress.

Plants (Basel)

January 2025

State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.

Plants respond to environmental changes by altering the anatomical structure of the xylem and its hydraulic properties. While numerous studies have explored the effects of individual environmental factors on crops, the combined interactions of these factors remain underexplored. As climate change intensifies, the occurrence of salt stress is becoming more frequent, alongside a rise in atmospheric CO concentration.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!