Previous studies using genetic mouse models have implicated COX-2 in the browning of white adipose tissues (WATs) in mice during cold exposure. However, COX-2 is important during development, and conventional knockouts (KOs) exhibit many defects, conditioned by genetic background. Similarly, the physiological relevance of transgenic overexpression of COX-2 is questionable. In the present study, we utilized mice in which COX-2 was deleted postnatally, bypassing the consequences of enzyme deficiency during development. Despite activation of thermogenesis and browning of inguinal WAT, cold exposure failed to increase COX-2 expression in the adipose tissues of mice with different genetic backgrounds, and the body temperature response to cold was unaltered in postnatal global COX-2 KOs. Selective disruption of COX-2 in adipose tissues also failed detectably to impact systemic prostaglandin biosynthesis. Browning of inguinal WATs induced by exposure to cold is independent of adipose tissue COX-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6118132 | PMC |
http://dx.doi.org/10.1016/j.celrep.2018.06.082 | DOI Listing |
Genes (Basel)
December 2024
Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China.
Background/objectives: UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
Background: The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
Institute of Medical Research at the San Carlos Clinic Hospital (IdISSC), Madrid, Spain; Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Spain.
PAS domain-containing serine/threonine-protein kinase (PASK) is a nutrient and energy sensor regulated by fasting/refeeding conditions in hypothalamic areas involved in controlling energy balance. In this sense, PASK plays a role in coordinating the activation/inactivation of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) in response to fasting. PASK deficiency protects against the development of diet-induced obesity.
View Article and Find Full Text PDFJBJS Rev
January 2025
Department of Orthopaedic Surgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island.
Background: Iliopsoas injuries are a common cause of anterior hip and groin pain and can be successfully managed with conservative treatment. Corticosteroid and local anesthetic injections can also be offered in conjunction with nonoperative management. Given the variability in reported injection guidelines, composition, and techniques, the purpose of this study was to systematically review the literature to assess progression to surgery and patient outcomes following iliopsoas injections.
View Article and Find Full Text PDFPhytomedicine
February 2025
Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:
Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.
Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!