Many of the cytokine-based cancer immunotherapies are hindered by the devastating side effects of systemic delivery of the cytokines. To address this problem, we previously described a novel approach to locally achieve high doses of interleukin-12 (IL-12) in tumors and demonstrated that bi-functional fusion protein mIL-12/FasTI expressed by stable clones of TC-1 cells efficiently suppressed tumor proliferation by activating natural killer (NK) cells and other cytolytic killer cells and sending apoptotic signals into tumor cells. In the present study, we employed a lentiviral vector-based gene delivery system to deliver this fusion construct directly into tumor cells. We show that lentiviral vector efficiently delivers the fusion constructs into Hela cells in vitro as assayed by RT-PCR and immunohistochemistry (IHC). We also confirm that fusion protein mIL-12/FasTI delivered by the viral vector significantly enhanced killer cell activation, increased caspase-3 activity and decreased tumor growth in vitro. This study offers a further step for fusion protein cancer therapy for cancer patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059467 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201100 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!