Graphene-Oxide-Based FRET Platform for Sensing Xenogeneic Collagen Coassembly.

J Agric Food Chem

School of Chemical and Environmental Engineering , Wuhan Polytechnic University, Wuhan 430023 , P. R. China.

Published: August 2018

Xenogeneic collagen coassembly (XCCA) offers a new view for the design and performance regulation of novel collagen-based biomaterials. But there is still a lack of accurate and sensitive method for monitoring XCCA. In this study, a simple and efficient graphene-oxide (GO)-based fluorescence resonance energy transfer (FRET) platform has been developed to sense XCCA. We first designed a fluorescein isothiocyanate (FITC)-labeled porcine skin collagen (PSC) that adsorbed on the GO surface and effectively quenched its fluorescence. Upon the addition of grass carp skin collagen (GCSC), the XCCA between PSC and GCSC resulted in desorption of FITC-PSC from GO surface and thus caused an increase in fluorescence signal. Under the optimal conditions, the fluorescence signal linearly increased with the increase in the GCSC concentration in the range of 50-1000 μg/mL, with a sensitivity of 22 μg/mL (S/N = 3). Furthermore, the developed strategy also exhibited excellent specificity and anti-interference ability. More interestingly, the thermal stability of collagen fibrils formed by XCCA is linearly related to the GCSC concentration. These results open a facile, effective, and sensitive approach for sensing XCCA and provide a new strategy for arbitrarily regulating the thermal stability of collagen fibrils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.8b02554DOI Listing

Publication Analysis

Top Keywords

fret platform
8
xenogeneic collagen
8
collagen coassembly
8
skin collagen
8
fluorescence signal
8
gcsc concentration
8
thermal stability
8
stability collagen
8
collagen fibrils
8
collagen
6

Similar Publications

Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E.

View Article and Find Full Text PDF

Accurate and sensitive fluorescence imaging of biothiols is essential for understanding the mechanism underlying some physiological and pathological events, as well as the prevention and diagnosis of diseases. However, low signal transduction efficiency and poor biocompatibility of fluorescence tags associated with current sensors hinder their potential utilizations. Herein, a smart biothiols sensitive vivo imaging platform on the basis of amplifying nanoprobe has been designed.

View Article and Find Full Text PDF

Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.

View Article and Find Full Text PDF

DNA-Assisted Assays for Studying Lipid Transfer Between Membranes.

Methods Mol Biol

December 2024

State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.

Extended-synaptotagmins (E-Syts) are proteins located on the endoplasmic reticulum (ER) that tether the ER to the plasma membrane (PM) and regulate their lipid homeostasis via its lipid transfer module, the synaptotagmin-like mitochondrial lipid-binding protein (SMP) domain. Here, we describe in vitro DNA nanostructure-assisted lipid transfer assays investigating how the SMP domain transports lipids between membranes and associates with the membranes to extract and release lipids. The lipid transfer signal was detected through fluorescence resonance energy transfer (FRET).

View Article and Find Full Text PDF

Novel dual-channel ratiometric fluorescence probe for SO detection in food and bioimaging applications based on FRET mechanism.

Bioorg Chem

December 2024

Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engneering, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China. Electronic address:

SO is commonly used to ensure the safety of food, but englobing of excessive SO poses serious risks to human health. Additionally, as fourth gaseous signaling molecule, it plays a critical role in various physiological processes. Therefore, monitoring the concentration of SO in food and cells is crucial for correlative research and disease diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!