Electrostatic forces greatly affect the overall dynamics and diffusional activities of suspended charged particles in crowded environments. Accordingly, the concentration of counter- or co-ions in a fluid-''the salt"-determines the range, strength, and order of electrostatic interactions between particles. This environment fosters engineering routes for controlling directed assembly of particles at both the micro- and nanoscale. Here, we analyzed two computational modeling schemes that considered salt within suspensions of charged particles, or polyelectrolytes: discrete and continuum. Electrostatic interactions were included through a Green's function formalism, where the confined fundamental solution for Poisson's equation is resolved by the general geometry Ewald-like method. For the discrete model, the salt was considered as regularized point-charges with a specific valence and size, while concentration fields were defined for each ionic species for the continuum model. These considerations were evolved using Brownian dynamics of the suspended charged particles and the discrete salt ions, while a convection-diffusion transport equation, including the Nernst-Planck diffusion mechanism, accounted for the dynamics of the concentration fields. The salt/particle models were considered as suspensions under slit-confinement conditions for creating crowded "macro-ions", where density distributions and radial distribution functions were used to compare and differentiate computational models. Importantly, our analysis shows that disparate length scales or increased system size presented by the salt and suspended particles are best dealt with using concentration fields to model the ions. These findings were then validated by novel simulations of a semipermeable polyelectrolyte membrane, at the mesoscale, from which ionic channels emerged and enable ion conduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.8b00221 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
Osteoporosis is a systemic metabolic disease that impairs bone remodeling by favoring osteoclastic resorption over osteoblastic formation. Nanotechnology-based therapeutic strategies focus on the delivery of drug molecules to either decrease bone resorption or increase bone formation rather than regulating the entire bone remodeling process, and osteoporosis interventions suffer from this limitation. Here, we present a multifunctional nanoparticle based on metal-phenolic networks (MPNs) for the treatment of systemic osteoporosis by regulating both osteoclasts and osteoblasts.
View Article and Find Full Text PDFACS Nano
January 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Thermal energy, constantly being produced in natural and industrial processes, constitutes a significant portion of energy lost through various inefficiencies. Employing the thermogalvanic effect, thermocells (TECs) can directly convert thermal energy into electricity, representing a promising energy-conversion technology for efficient, low-grade heat harvesting. However, the use of high-cost platinum electrodes in TECs has severely limited their widespread adoption, highlighting the need for more cost-effective alternatives that maintain comparable thermoelectrochemical performance.
View Article and Find Full Text PDFSci Total Environ
January 2025
Occoquan Watershed Monitoring Laboratory, The Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 9408 Prince William Street, Manassas, VA, USA.
We present the results of a 1-year study that quantified salt levels in stormwater, soils, and plant tissues from 14 stormwater detention basins across Northern VA in an above-average snow year. We characterize (1) the level of salt stress plants experience, (2) the extent to which current plant communities feature salt tolerant species, and (3) the capacity of these species to phytoremediate soils and reduce the impacts of deicer and anti-icer use. Our results suggest that detention basin vegetation experience a range of salt stress levels that depend on drainage area type (roads: moderate to high > parking lots: low to moderate > pervious areas: none).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:
This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
January 2025
Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.
Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!