Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine.

Materials (Basel)

Department of Electronic Engineering, Beijing National Research Center for Information science and Technology, Tsinghua University, Beijing 100084, China.

Published: July 2018

Optical fibers and waveguides in general effectively control and modulate light propagation, and these tools have been extensively used in communication, lighting and sensing. Recently, they have received increasing attention in biomedical applications. By delivering light into deep tissue via these devices, novel applications including biological sensing, stimulation and therapy can be realized. Therefore, implantable fibers and waveguides in biocompatible formats with versatile functionalities are highly desirable. In this review, we provide an overview of recent progress in the exploration of advanced optical fibers and waveguides for biomedical applications. Specifically, we highlight novel materials design and fabrication strategies to form implantable fibers and waveguides. Furthermore, their applications in various biomedical fields such as light therapy, optogenetics, fluorescence sensing and imaging are discussed. We believe that these newly developed fiber and waveguide based devices play a crucial role in advanced optical biointerfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6117721PMC
http://dx.doi.org/10.3390/ma11081283DOI Listing

Publication Analysis

Top Keywords

fibers waveguides
20
optical fibers
12
biomedical applications
8
implantable fibers
8
advanced optical
8
fibers
5
waveguides
5
biocompatible implantable
4
optical
4
implantable optical
4

Similar Publications

Distributed feedback lasers, which feature rapid wavelength tunability, are not presently available in the yellow and orange spectral regions, impeding spectroscopic studies of short-lived species that absorb light in this range. To meet this need, a rapidly tunable laser system was constructed, characterized, and demonstrated for measurements of the NH radical at 597.4 nm.

View Article and Find Full Text PDF

Optical sensors based on plasmonic nano-structures: A review.

Heliyon

December 2024

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Optical sensors are among the most significant optical devices that have found extensive applications for THz sensing. Surface plasmon-based sensors have attracted increasing attention more than other kinds of optical sensors such as photonic crystal, optical fiber, and graphene sensors, owing to their compact footprint, fast reaction, and high sensitivity value. Therefore, this work reviews plasmonic sensor structures divided into three general categories.

View Article and Find Full Text PDF

A wavelength demodulation method for ultra-short fiber Bragg grating (US-FBG) sensors based on an arrayed waveguide grating (AWG) and a convex optimization algorithm is proposed and demonstrated. Instead of measuring the output power ratio of the two adjacent AWG channels as previously done, in this work the wavelength demodulation is realized by reconstructing the US-FBG spectrum. The principle of spectral reconstruction involves using an AWG to sample the spectral information of US-FBG and constructing underdetermined matrix equations with the obtained prior information on transmission responses and the detected output power from multiple AWG channels.

View Article and Find Full Text PDF

Scintillating Glass Fiber Arrays Enable Remote Radiation Detection and Pixelated Imaging.

Adv Mater

December 2024

State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.

The emerging metal halide perovskites are challenging the traditional scintillators in the field of radiation detection and radiography. However, they lack the capability for remote and real-time radiation monitoring and imaging in confined and hostile conditions. To address this issue, details on an inorganic scintillating glass fiber incorporating perovskite quantum dots (QDs) as highly efficient pixelated radiation emitters are reported, while the glass fibers themselves serve at the same time as low-loss waveguides, enabling long-distance and underwater X-ray detection.

View Article and Find Full Text PDF

Online Monitoring of Catalytic Processes by Fiber-Enhanced Raman Spectroscopy.

Sensors (Basel)

November 2024

Savannah River National Laboratory, 301 Gateway Drive, Aiken, SC 29803, USA.

An innovative solution for real-time monitoring of reactions within confined spaces, optimized for Raman spectroscopy applications, is presented. This approach involves the utilization of a hollow-core waveguide configured as a compact flow cell, serving both as a conduit for Raman excitation and scattering and seamlessly integrating into the effluent stream of a cracking catalytic reactor. The analytical technique, encompassing device and optical design, ensures robustness, compactness, and cost-effectiveness for implementation into process facilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!