Kinetics and mechanistic pathways for atmospheric oxidation of HFE-7500 ( n-CFCF(OCHCH)CF(CF)) initiated by Cl atom and NO radical have been studied using density functional theory. Oxidative degradation pathways facilitated by H-abstraction from the -OCH or -CH groups in HFE-7500 have been considered. It has been shown that H-abstraction from the α-site (-OCH) is favored over other reaction pathways. The rate constants were computed employing transition-state theory and canonical variation transition-state theory incorporating small curvature tunnelling correction, over the temperature range of 250-450 K at atmospheric pressure. Calculated rate constants at 298 K and 1 atm compare well with earlier experiments. Temperature dependence of the rate constants and branching ratios for these pathways contributing to overall reaction are described. It has been shown that the rate constants over the studied temperature range was found to fit well to the modified Arrhenius equation (in cm molecule s) k = 1.10 × 10 T exp(-69.87 ± 1.41/T) and k = 7.66 × 10 T exp(596.40 ± 1.22/T). Standard enthalpies of formation for the reactant (CFCF(OCHCH)CF(CF)) and the products [CFCF(OCHCH)CF(CF) and CFCF(OCHCH)CF(CF)] during H-abstraction are derived using the isodesmic approach. Atmospheric implications of the titled molecule are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.8b04225 | DOI Listing |
Bioelectrochemistry
January 2025
Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522 Japan.
Heparin concentration c in a blood extracorporeal circulation has been real-timely predicted based on the relaxation strength Δε at relaxation frequency f extracted by relaxation time distribution (RTD). The simulated extracorporeal circulation was conducted to optimize the number of Δε for the prediction of c using the porcine whole blood (WB) and low-leukocyte and -platelet blood (LLPB) under the condition of the gradual increment of c from 0 to 8 U/mL with constant flow rate and blood temperature. The experimental results show that among the three relaxation strengths Δε, Δε and Δε (in ascending order of frequency), Δε at f = 5.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Geological Sciences & Engineering, Queen's University, Kingston, Ontario, Canada. Electronic address:
Thiolated arsenic (As) compounds have been identified in various natural and engineered environments worldwide and are important for the biogeochemical cycling of As, yet quantitative data regarding their stability and transformation rates remains scarce. This study investigates the oxidation kinetics of mono-, di-, and tri-thioarsenate at varying pH, Fe, and (thio-)As concentrations in the aqueous phase. Experiments conducted over four weeks revealed that all thioarsenates were oxidized faster at lower pH, with rates of up to several μmoles/L/d at a pH of 3.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
Continuous production of entropy and the corresponding energy dissipation is a defining characteristic of nonequilibrium systems. When a system's full chemical kinetic description is known, its entropy production rate can be computed from the microscopic rate constants. However, such a calculation typically underestimates energy dissipation when the states of the underlying system are mesoscopic, i.
View Article and Find Full Text PDFInorg Chem
January 2025
Jiangxi Province Key Laboratory of Nuclear Physics and Technology, East China University of Technology, Nanchang 330013, China.
Recycling waste salt in the dry reprocessing of nuclear fuel and reducing electric energy consumption in the electrorefining process are crucial steps toward addressing significant challenges in this field. The present study proposes a novel approach to purify waste salt by selectively adsorbing excessive fission products using 5A molecular sieves (5A), based on the principles of electrorefining, with the ultimate aim of achieving sustainable development in nuclear fuel. First, Lutetium (Lu)-Bi alloy was synthesized through constant potential electrolysis in the LiCl-KCl-LuCl melt, resulting in a 90.
View Article and Find Full Text PDFBiochemistry
January 2025
Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.
Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!