Deep-trap persistent luminescent materials, due to their exceptional ability of energy storage and controllable photon release under external stimulation, have attracted considerable attention in the field of optical information storage. Currently, the lack of suitable materials is still the bottleneck that restrains their practical applications. Herein, we successfully synthesized a series of deep-trap persistent luminescent materials YAlGa O:Ce,V ( x = 0-3) with a garnet structure and developed novel phosphor-in-glass (PiG) films containing these phosphors. The synthesized PiG films exhibited sufficiently deep traps, narrow trap depth distributions, high trap density, high quantum efficiency, and excellent chemical stability, which solved the problem of chemical stability at high temperatures in the reported phosphor-in-silicone films. Moreover, the trap depth in the phosphors and PiG films could be tailored from 1.2 to 1.6 eV, thanks to the bandgap engineering effect, and the emission color was simultaneously changed from green to yellow due to the variation of crystal field strength. Image information was recorded on the PiG films by using a 450 nm blue-light laser in a laser direct writing mode and the recorded information was retrieved under high-temperature thermal stimulation or photostimulation. The YAlGa O:Ce,V PiG films as presented in this work are very promising in the applications of multidimensional and rewritable optical information storage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b10713DOI Listing

Publication Analysis

Top Keywords

pig films
20
trap depth
12
yalga ocev
12
optical storage
12
deep-trap persistent
8
persistent luminescent
8
luminescent materials
8
chemical stability
8
films
7
pig
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!