Stoichiometry of An(iii)-DMDOHEMA complexes formed during solvent extraction.

Dalton Trans

Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe, Germany.

Published: August 2018

N,N'-Dimethyl,N,N'-dioctylhexylethoxymalonamide (DMDOHEMA) is used to separate An(iii) and Ln(iii) from fission products in several liquid-liquid extraction processes that aim at recycling actinides. The stoichiometry of the extracted complexes is important for a complete understanding of the processes. The presented work focuses on the complexation of Cm(iii) with DMDOHEMA studied by TRLFS in mono- and biphasic (solvent extraction) systems. The formation of [Cm(DMDOHEMA)n]3+ (n = 1-3) in 1-octanol containing 1.7 mol L-1 of water with log β'1 = 2.6 ± 0.3, log β'2 = 4.0 ± 0.5, log β'3 = 4.3 ± 0.5 was confirmed. In addition, fluorescence lifetime measurements indicated the formation of a 1 : 4 complex. Furthermore, solvent extraction experiments were performed, varying the proton and nitrate concentrations. TRLFS measurements of organic phases confirmed the existence of two species, [Cm(DMDOHEMA)3(NO3)(H2O)1-2]2+ (dominant at high proton and nitrate concentrations) and [Cm(DMDOHEMA)4(H2O)]3+ (dominant at low proton and nitrate concentrations). To support the proposed stoichiometries, vibronic side-band spectroscopy (VSBS) was employed, allowing the observation of vibrations of functional groups coordinated to the probed metal ion. Clear differences between the vibronic side bands of the 1 : 3 and 1 : 4 complex in the range of 900-1300 cm-1 were observed. Vibrational spectra calculated by DFT complimented the experimental data and confirmed the proposed stoichiometries. They revealed a monodentate coordination mode of the nitrate and two water molecules in the 1 : 3 complex.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt02504eDOI Listing

Publication Analysis

Top Keywords

solvent extraction
12
proton nitrate
12
nitrate concentrations
12
1  4 complex
8
proposed stoichiometries
8
stoichiometry aniii-dmdohema
4
aniii-dmdohema complexes
4
complexes formed
4
formed solvent
4
extraction
4

Similar Publications

Rapid Determination of Organic and Inorganic Selenium in Poultry Tissues by Internal Extractive Electrospray Ionization Mass Spectrometry.

Anal Chem

January 2025

The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.

An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.

View Article and Find Full Text PDF

Efficient Extraction of Phenols from Coal Tar and Preparation of Phenolic Resin-Based Porous Carbon for Advanced Supercapacitor Application.

Small

January 2025

State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830017, P. R. China.

Developing simple and efficient extraction methods for phenolic substances from coal tar, which facilitate their direct transformation into high-performance electrode materials, holds considerable practical significance. In this study, amide-zinc chloride deep eutectic solvents are employed for efficient phenol extraction. The optimal phenol extraction process is subsequently investigated, and it is found that the robust hydrogen bonding interactions between solvents and phenols significantly enhance extraction efficiency.

View Article and Find Full Text PDF

Background: Inflammation-induced oxidative stress is a pathophysiological mechanism of inflammatory diseases. Treatments targeting oxidative stress can reduce inflammatory tissue damage.

Objectives: This study aimed to conduct phytochemical analysis and evaluate the antioxidant effects of the hydroalcoholic extract of blossoms () and rhizomes ().

View Article and Find Full Text PDF

A Novel Eco-Friendly Process for the Synthesis and Purification of Ascorbyl-6-Oleates.

Foods

December 2024

Department of Marine Bio Food Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Republic of Korea.

Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.

View Article and Find Full Text PDF

Natural Eutectic Solvent-Based Temperature-Controlled Liquid-Liquid Microextraction and Nano-Liquid Chromatography for the Analysis of Herbal Aqueous Samples.

Foods

December 2024

Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain.

In this work, two novel (-)-menthol-based hydrophobic natural eutectic solvents with vanillin and cinnamic acid were prepared and applied as extraction solvents. In this regard, 12 endocrine disruptors, including phenol, 2,4-dimethylphenol, 2,3,6-trimethylphenol, 4--butylphenol, 4--butylphenol, 4--amylphenol, 4--hexylphenol, 4--octylphenol, 4--heptylphenol, 4--octylphenol, and 4--nonylphenol and bisphenol A, were studied in a green tea drink. A temperature-controlled liquid-liquid microextraction was used as the extraction method, and nano-liquid chromatography-ultraviolet detection was used as the separation and determination system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!