The authors describe new ligands with two 1,3-diketone groups and two heteroaromatic (pyridyl or quinolyl) moieties embedded to the upper and lower rims of dibromo-substituted calix[4]arene scaffold. The ligands bind Tb(III) ions in alkaline DMF solutions to form 1:1 complexes. The strong Tb(III)-centered luminescence (with excitation/emission peaks at 330/545 nm) of the complexes results from efficient ligand-to-metal energy transfer. The complexes were incorporated into polystyrenesulfonate (PSS) colloids by diluting a DMF solution of the complex with aqueous solution of PSS. The luminescence of the colloids is quenched by copper(II), and this was used to develop a method for its fluorometric determination in nanomolar concentrations. The lower limit of detection is 0.88 nM. Quenching is a result of (a) ion exchange which converts the terbium complexes into their copper counterparts, and (b) energy transfer from Tb(III) to Cu(II) complexes. The low cytotoxicity of the colloidal nanoprobe conceivably makes it a promising tool for use in cellular imaging. Graphical abstract New calix[4]arene derivative provide efficient binding sites for Tb(III) and Cu(II) ions. The Tb(III) complexes were embedded to core-shell nanoparticles by solvent-mediated aggregation followed by polystryrenesulfonate deposition. The nanoparticles exhibit luminescence response on copper ions in nanomolar concentration range.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-018-2923-2DOI Listing

Publication Analysis

Top Keywords

low cytotoxicity
8
tbiii complexes
8
energy transfer
8
tbiii cuii
8
complexes
7
tbiii
5
polystyrenesulfonate-coated nanoparticles
4
nanoparticles low
4
cytotoxicity determination
4
determination copperii
4

Similar Publications

The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.

View Article and Find Full Text PDF

Amphiphilic polymers with distinct polarity differences, known as sharp polarity contrast polymers (SPCPs), have gained much attention for their ability to form micelles with low critical micelle concentrations (CMCs) and potential in anticancer drug delivery. This study addresses the limited research on structure-property relationships of SPCPs by developing various SPCPs and exploring their physicochemical properties and biological applications. Specifically, the superhydrophobic aliphatic palmitoyl (Pal) was coupled to the superhydrophilic zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) to form Pal-pMPC diblock copolymers.

View Article and Find Full Text PDF

A novel pH-responsive full-bio-based surfactant (Ca-S) containing a dynamic covalent bond is synthesized using renewable cashew phenol, 5-chloro-2-furanaldehyde, and taurine. The structure of Ca-S is characterized by Fourier transform infrared spectroscopy (FTIR) and H nuclear magnetic resonance (NMR) analysis. Limonene containing oil-in-water (O/W) microemulsions are prepared on the basis of the Ca-S surfactant and are applied to the remediation of oil-contaminated soil under low-energy conditions at ambient temperature.

View Article and Find Full Text PDF

Despite viral suppression with antiretroviral therapy, immune nonresponders (INR) among people living with HIV (PLWH) still have a higher risk of developing AIDS-related and non-AIDS-related complications. Our study aimed to investigate the phenotype and functions of Natural Killer (NK) cells in INR, to better understand underlying mechanisms of immune nonresponse. Our cross-sectional study included PLWH aged over 45 with an undetectable HIV viral load sustained for at least 2 years.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!