A nickel nanoparticle/nafion-graphene oxide (NiNP/Nf-GO) modified screen-printed electrode (SPE) was developed for rapid and environmentally friendly electrochemical determination of chemical oxygen demand (COD). The morphology and the electrochemical performance of the SPEs with different surface modifications were investigated by scanning electron microscopy, electrochemical impedance spectroscopy, amperometry, and cyclic voltammetry, respectively. Interestingly, incorporation of graphene oxide as supporting materials to the NiNP/Nf-GO modified SPE enables high catalyst loading and electrode contact, leading to excellent electrocatalytic oxidation ability. A flow detection system was constructed based the newly designed NiNP/Nf-GO modified SPE with USB connection, a 3D-printed thin-layer flow cell (TLFC), and a peristaltic pump. The flow detection system showed an excellent performance for COD analysis with a linear detection range of 0.1~400 mg L and a lower detection limit of 0.05 mg L with an oxidation potential of 0.45 V. The system was further applied to determine the COD in surface water samples. The results were consistent with those obtained by using the standard method (ISO 6060). Graphical abstract A novel nickel nanoparticle/nafion-graphene oxide (NiNP/Nf-GO) modified screen-printed electrode (SPE) with excellent electrocatalytic oxidation ability was designed and fabricated. This electrode with USB connection was applied in a flow detection system equipped with a 3D-printed thin-layer flow cell and a peristaltic pump for environmentally friendly electrochemical determination of chemical oxygen demand.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-018-2917-0DOI Listing

Publication Analysis

Top Keywords

ninp/nf-go modified
16
nickel nanoparticle/nafion-graphene
12
nanoparticle/nafion-graphene oxide
12
modified screen-printed
12
screen-printed electrode
12
determination chemical
12
chemical oxygen
12
oxygen demand
12
flow detection
12
detection system
12

Similar Publications

A nickel nanoparticle/nafion-graphene oxide (NiNP/Nf-GO) modified screen-printed electrode (SPE) was developed for rapid and environmentally friendly electrochemical determination of chemical oxygen demand (COD). The morphology and the electrochemical performance of the SPEs with different surface modifications were investigated by scanning electron microscopy, electrochemical impedance spectroscopy, amperometry, and cyclic voltammetry, respectively. Interestingly, incorporation of graphene oxide as supporting materials to the NiNP/Nf-GO modified SPE enables high catalyst loading and electrode contact, leading to excellent electrocatalytic oxidation ability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!