Shifts in functional trait-species abundance relationships over secondary subalpine meadow succession in the Qinghai-Tibetan Plateau.

Oecologia

Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650, China.

Published: October 2018

Although trait-based processes of community assembly during secondary succession invokes multiple factors that ultimately determine the presence or absence of a species, little is known regarding the impacts of functional traits on species abundance in successional plant communities. Here in species-rich subalpine secondary successional meadows of the Qinghai-Tibetan Plateau, we measured photosynthesis rate and leaf proline content that are related to plant growth and abiotic stress resistance, respectively, and seed germination rate that is closely correlated with plant germination strategy to test their influence on species abundance during succession. We used a linear mixed effects model framework to examine the shifts in trait-abundance relationships and the correlations among these three traits in successional communities. We observed significant shifts in trait-abundance relationships during succession, e.g., abundant species in early-successional meadows exhibited relatively high photosynthesis rates and leaf proline content, but showed low seed germination rates, whereas the converse were true in late successional communities. However, the correlations among the three traits were insignificant in most meadow communities. Our results show that functional traits associated with plant growth, stress resistance, and reproduction impose strong influence on species abundance during secondary subalpine meadow succession in the Qinghai-Tibetan Plateau.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-018-4230-3DOI Listing

Publication Analysis

Top Keywords

qinghai-tibetan plateau
12
species abundance
12
secondary subalpine
8
subalpine meadow
8
meadow succession
8
succession qinghai-tibetan
8
functional traits
8
leaf proline
8
proline content
8
plant growth
8

Similar Publications

Asthma is a chronic inflammatory respiratory disease that affects millions globally and poses a serious public health challenge. Current therapeutic strategies, including corticosteroids, are constrained by variable patient responses and adverse effects. In this study, a polyphenolic extract derived from the Tibetan medicinal plant Trimen (SRT) was employed and shown to improve experimentally (ovalbumin + cigarette smoke, OVA + CS) induced asthma in rats.

View Article and Find Full Text PDF

As one of the most sensitive and fragile alpine ecosystems in the Qilian Mountains, the alpine meadow holds significant scientific importance in understanding the changes in the characteristics of soil bacterial community in response to altitude and aspect variations. In our study, we analyzed the composition, diversity, and function of soil bacterial communities in alpine meadows at different altitudes and aspects and their relationship with environmental factors. Our results indicate that altitude and aspect orientation significantly influences the diversity index and composition of soil bacterial communities.

View Article and Find Full Text PDF

Evolutionary Analysis of Hypoderma Pantholopsum in Tibetan Antelopes on the Qinghai-Tibetan Plateau.

Acta Parasitol

January 2025

Academy of Animal Sciences and Veterinary Medicine, Qinghai University, Xining, People's Republic of China.

Purpose: Hypoderma pantholopsum is a parasite that parasitizes Tibetan antelopes (Pantholops hodgsonii). This study aims was to reveal the genetic diversity within H. pantholopsum and contribute to the protection of Tibetan antelope.

View Article and Find Full Text PDF

Differential diversity and structure of autotrophs in agricultural soils of Qinghai Province.

Microbiol Spectr

January 2025

Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai-Tibetan Plateau in Qinghai Province, Academy of Plateau Science and Sustainability, School of Life Science, Qinghai Normal University, Xining, China.

Unlabelled: The biodiversity of CO-assimilating bacterial communities is pivotal for carbon sequestration in agricultural systems. Changes in the diversity, structure, and activity of the soil chemolithoautotrophic bacteria were examined in four agricultural areas, Dulan (DL), Gonghe (GH), Huzhu (HZ), and Datong (DT) counties in Qinghai Province, where wheat, oilseed rape, and barley were planted. This process was performed using Illumina amplicon sequencing of the ribulose-1,5-bisphosphatecarboxylase/oxygenase (RubisCO) gene ( Form I) and activity data.

View Article and Find Full Text PDF

Environmental Changes Driving Shifts in the Structure and Functional Properties of the Symbiotic Microbiota of .

Microorganisms

December 2024

MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Science, Fudan University, Songhu Road 2005, Shanghai 200438, China.

Symbiotic microbiota significantly influence the development, physiology, and behavior of their hosts, and therefore, they are widely studied. However, very few studies have investigated the changes in symbiotic microbiota across generations. originating from the Qinghai-Tibetan Plateau were cultured through seven generations in our laboratory, and the symbiotic microbiota of were sequenced using a 16S rRNA amplicon to analyze changes in the structure and functional properties of the symbiotic microbiota of from a harsh environment to an ideal environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!