Heart Vessels
Medical College, Nanchang University, 330006, Nanchang, People's Republic of China.
Published: January 2019
We hypothesize that the controlled delivery of vascular endothelial growth factor (VEGF) using a novel protein sustained-release system based on the combination of protein-loaded dextran microparticles and PLGA microspheres could be useful to achieve mature vessel formation in a rat hind-limb ischemic model. VEGF-loaded dextran microparticles were fabricated and then encapsulated into poly(lactic-co-glycolic acid) (PLGA) microspheres to prepare VEGF-dextran-PLGA microspheres. The release behavior and bioactivity in promoting endothelial cell proliferation of VEGF from PLGA microspheres were monitored in vitro. VEGF-dextran-PLGA microsphere-loaded fibrin gel was injected into an ischemic rat model, and neovascularization at the ischemic site was evaluated. The release of VEGF from PLGA microspheres was in a sustained manner for more than 1 month in vitro with low level of initial burst release. The released VEGF enhanced the proliferation of endothelial cells in vitro, and significantly promoted the capillaries and smooth muscle α-actin positive vessels formation in vivo. The retained bioactivity of VEGF released from VEGF-dextran-PLGA microspheres potentiated the angiogenic efficacy of VEGF. This sustained-release system may be a promising vehicle for delivery of multiple angiogenic factors for therapeutic neovascularization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00380-018-1230-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.