One-dimensional (1D) nanofibers have been considered to be important building blocks for nano-electronics due to their superior physical and chemical properties. In this report, high-performance zinc tin oxide (ZnSnO) nanofibers with various composition ratios were prepared by electrospinning. The surface morphology, crystallinity, grain size distribution, and chemical composition of the nanofibers were investigated. Meanwhile, field-effect transistors (FETs) based on ZnSnO nanofiber networks (NFNs) with various composition ratios were integrated and investigated. For optimized Zn0.3Sn0.7O NFNs FETs, the device based on an SiO2 dielectric exhibited a high electrical performance, including a high on/off current ratio (Ion/off) of 2 × 107 and a field-effect mobility (μFE) of 0.17 cm2 V-1 s-1. When a high-permittivity (κ) ZrOx thin film was employed as the dielectric in Zn0.3Sn0.7O NFNs FETs, the operating voltage was substantially reduced and a high μFE of 7.8 cm2 V-1 s-1 was achieved. These results indicate that the Zn0.3Sn0.7O NFNs/ZrOx FETs exhibit great potency in low-cost and low-voltage devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr03887b | DOI Listing |
Biosens Bioelectron
January 2025
School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China; Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China. Electronic address:
As obesity rates continue to rise, there is an increasing focus on reducing obesity through exercise. People are becoming more aware of the importance of weight loss through physical activity. However, the effectiveness of exercise can vary significantly among individuals, making it challenging to evaluate its impact.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
For potential application in advanced memory devices such as dynamic random-access memory (DRAM) or NAND flash, nanolaminated indium oxide (In-O) and gallium oxide (Ga-O) films with five different vertical cation distributions were grown and investigated by using a plasma-enhanced atomic layer deposition (PEALD) process. Specifically, this study provides an in-depth examination of how the control of individual layer thicknesses in the nanolaminated (NL) IGO structure impacts not only the physical and chemical properties of the thin film but also the overall device performance. To eliminate the influence of the cation composition ratio and overall thickness on the IGO thin film, these parameters were held constant across all conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Electrical Engineering, Kookmin University, Seoul 02707, Republic of Korea.
In this study, we analyze the characteristics of fast transient drain current () in IGZO-based field-effect transistors (FETs) with different composition ratios (device O: ratio of 1:1:1 for In, Ga, Zn, device G: ratio of 0.307:0.39:0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
A device architecture based on heterostructure WSe/organic semiconductor field-effect transistors (FETs) is demonstrated in which ambipolar conduction is virtually eliminated, resulting in essentially unipolar FETs realized from an ambipolar semiconductor. For p-channel FETs, an electron-accepting organic semiconductor such as hexadecafluorocopperphthalocyanine (FCuPc) is used to form a heterolayer on top of WSe to effectively trap any undesirable electron currents. For n-channel FETs, a hole-accepting organic semiconductor such as pentacene is used to reduce the hole currents without affecting the electron currents.
View Article and Find Full Text PDFTalanta
January 2025
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & School of Science & Shaanxi Key Laboratory of Information Photonic Technique & Institute of Wide Bandgap Semiconductors, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:
Glucose detection is crucial for diagnosis, prevention and treatment of diabetes mellitus. In this work, 10 nm AlO thin film was introduced on the channel of diamond solution-gate field-effect transistor (SGFET) to improve the performance of glucose detection. AFM results show the roughness of channel surface increased after AlO thin film deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!