A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Extrahippocampal Contributions to Age-Related Changes in Spatial Navigation Ability. | LitMetric

Extrahippocampal Contributions to Age-Related Changes in Spatial Navigation Ability.

Front Hum Neurosci

School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States.

Published: July 2018

Age-related decline in spatial navigation is well-known and the extant literature emphasizes the important contributions of a hippocampus-dependent spatial navigation system in mediating this decline. However, navigation is a multifaceted cognitive domain and some aspects of age-related navigational decline may be mediated by extrahippocampal brain regions and/or systems. The current review presents an overview of some key cognitive domains that contribute to the age-related changes in spatial navigation ability, and elucidates such domains in the context of an increased engagement of navigationally relevant extrahippocampal brain regions with advancing age. Specifically, this review focuses on age-related declines in three main areas: (i) allocentric strategy use and switching between egocentric and allocentric strategies, (ii) associative learning of landmarks/locations and heading directions, and (iii) executive functioning and attention. Thus far, there is accumulating neuroimaging evidence supporting the functional relevance of the striatum for egocentric/response strategy use in older adults, and of the prefrontal cortex for mediating executive functions that contribute to successful navigational performance. Notably, the functional role of the prefrontal cortex was particularly emphasized via the proposed relevance of the fronto-locus coeruleus noradrenergic system for strategy switching and of the fronto-hippocampal circuit for landmark-direction associative learning. In view of these putative prefrontal contributions to navigation-related functions, we recommend future spatial navigation studies to adopt a systems-oriented approach that investigates age-related alterations in the interaction between the prefrontal cortex, the hippocampus, and extrahippocampal regions, as well as an individual differences approach that clarifies the differential engagement of prefrontal executive processes among older adults.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048192PMC
http://dx.doi.org/10.3389/fnhum.2018.00272DOI Listing

Publication Analysis

Top Keywords

spatial navigation
20
prefrontal cortex
12
age-related changes
8
changes spatial
8
navigation ability
8
extrahippocampal brain
8
brain regions
8
strategy switching
8
associative learning
8
older adults
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!