Reproductive sinks regulate monocarpic senescence in wheat as desinking delayed flag leaf senescence under irrigated condition. In this study, wheat cv. HW 2041 and its isonuclear male sterile line (CMS) were subjected to post-anthesis water deficit stress to understand the association between sink strength, senescence and drought response in relation to oxidative stress and antioxidant defense at cellular and sub-cellular level. CMS plants maintained better water relations and exhibited delayed onset and progression of flag leaf senescence in terms of green leaf area, chlorophyll and protein content than fertile plants under water deficit stress (WDS). Delayed senescence in CMS plants under water deficit stress was associated with less reactive oxygen species generation, lower damage to membranes and better antioxidant defense both in terms of antioxidant enzyme activities and metabolite content compared to fertile plants. Expression of some senescence associated genes (SAGs) such as WRKY transcription factor (), glutamine synthetase1 (), wheat cysteine protease () and wheat serine protease () was lower while catalse 2 () transcript levels were higher in the CMS plants compared to HW2041 during senescence under water deficit stress. Antioxidant defense in chloroplasts was better in CMS line under water deficit stress compared to HW2041. This is the first report showing that reproductive sink enhanced drought induced senescence in flag leaf of wheat fertile line is associated with higher oxidative stress and damage and loss of antioxidant competence compared to its sterile line under water deficit stress. Higher expression of some SAGs and decline in superoxide dismutase and ascorbate peroxidase activity in the chloroplasts also contributed to the accelerated senescence in fertile line compared to its CMS line under WDS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6041228PMC
http://dx.doi.org/10.1007/s12298-018-0549-9DOI Listing

Publication Analysis

Top Keywords

water deficit
24
deficit stress
24
flag leaf
12
antioxidant defense
12
cms plants
12
senescence
10
reproductive sink
8
sink enhanced
8
enhanced drought
8
drought induced
8

Similar Publications

Quantifying the Deficits of Body Water and Monovalent Cations in Hyperglycemic Emergencies.

J Clin Med

December 2024

Research Service, Department of Medicine, Raymond G. Murphy Veterans Affairs Medical Center, University of New Mexico School of Medicine, Albuquerque, NM 87108, USA.

Hyperglycemic emergencies cause significant losses of body water, sodium, and potassium. This report presents a method for computing the actual losses of water and monovalent cations in these emergencies. We developed formulas for computing the losses of water and monovalent cations as a function of the presenting serum sodium and glucose levels, the sum of the concentrations of sodium plus potassium in the lost fluids, and body water at the time of hyperglycemia presentation as measured by bioimpedance or in the initial euglycemic state as estimated by anthropometric formulas.

View Article and Find Full Text PDF

Ajowan () is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan.

View Article and Find Full Text PDF

Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings.

View Article and Find Full Text PDF

Background: Anesthesia can lead to functional cognitive impairment, which can seriously affect postoperative recovery. To investigate the effect and mechanism of quercetin (Que) in anesthetized rats, the study provided a new therapeutic idea for the prevention of cognitive dysfunction caused by anesthesia.

Methods: Cognitively impaired rats were constructed using Isoflurane (ISO) anesthesia and treated with Que.

View Article and Find Full Text PDF

Photobiomodulation using an 830-nm laser alleviates hippocampal reactive gliosis and cognitive dysfunction in a mouse model of adolescent chronic alcohol exposure.

Pharmacol Biochem Behav

January 2025

Medical Laser Research Center, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; Department of Biomedical Science, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea. Electronic address:

Chronic alcoholism is known to have detrimental effects on the brain, including cognitive impairment, neurotransmitter imbalances, and brain atrophy. The hippocampus, crucial for spatial memory and cognitive functions, is particularly susceptible to alcohol-induced changes. Photobiomodulation (PBM), a non-invasive therapeutic method that utilizes red or near-infrared light, has shown promising applications in the central and peripheral nervous systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!