Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Zika virus is a global health threat due to significantly elevated risk of fetus malformations in infected pregnant women. Currently, neither an effective therapy nor a prophylactic vaccination is available for clinical use, desperately necessitating novel therapeutics and approaches to obtain them. Here, we present a structural model of the Zika virus RNA-dependent RNA polymerase (ZIKV RdRp) in complex with template and nascent RNAs, Mg ions and accessing nucleoside triphosphate. The model allowed for docking studies aimed at effective pre-screening of potential inhibitors of ZIKV RdRp. Applicability of the structural model for docking studies was illustrated with the NITD008 artificial nucleotide that is known to effectively inhibit the function of the ZIKV RdRp. The ZIKV RdRp - RNA structural model is provided for all possible variations of the nascent RNA bases pairs to enhance its general utility in docking and modelling experiments. The developed model makes the rational design of novel nucleosides and nucleotide analogues feasible and thus provides a solid platform for the development of advanced antiviral therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057956 | PMC |
http://dx.doi.org/10.1038/s41598-018-29459-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!