Pancreatic ductal adenocarcinoma (PDAC) is known for its resistance to gemcitabine, which acts to inhibit cell growth by termination of DNA replication. Tumor-associated macrophages (TAM) were recently shown to contribute to gemcitabine resistance; however, the exact mechanism of this process is still unclear. Using a genetic mouse model of PDAC and electron microscopy analysis, we show that TAM communicate with the tumor microenvironment via secretion of approximately 90 nm vesicles, which are selectively internalized by cancer cells. Transfection of artificial dsDNA () to murine peritoneal macrophages and injection to mice bearing PDAC tumors revealed a 4-log higher concentration of the in primary tumors and in liver metastasis than in normal tissue. These macrophage-derived exosomes (MDE) significantly decreased the sensitivity of PDAC cells to gemcitabine, and This effect was mediated by the transfer of miR-365 in MDE. miR-365 impaired activation of gemcitabine by upregulation of the triphospho-nucleotide pool in cancer cells and the induction of the enzyme cytidine deaminase; the latter inactivates gemcitabine. Adoptive transfer of miR-365 in TAM induced gemcitabine resistance in PDAC-bearing mice, whereas immune transfer of the miR-365 antagonist recovered the sensitivity to gemcitabine. Mice deficient of genes, which lack exosomal secretion, responded significantly better to gemcitabine than did wildtype. These results identify MDE as key regulators of gemcitabine resistance in PDAC and demonstrate that blocking miR-365 can potentiate gemcitabine response. Harnessing macrophage-derived exosomes as conveyers of antagomiRs augments the effect of chemotherapy against cancer, opening new therapeutic options against malignancies where resistance to nucleotide analogs remains an obstacle to overcome. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-18-0124DOI Listing

Publication Analysis

Top Keywords

macrophage-derived exosomes
12
gemcitabine resistance
12
transfer mir-365
12
gemcitabine
10
cancer cells
8
resistance
6
pdac
5
mir-365
5
transfer
4
transfer mirna
4

Similar Publications

Dual Checkpoint Inhibition in M2 Macrophages via Anti-PD-L1 and siRNA-Loaded M1-Exosomes: Enhancing Tumor Immunity through RNA-Targeting Strategies.

Eur J Pharmacol

January 2025

Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran. Electronic address:

The interaction between a cluster of differentiation 47 (CD47) on cancer cells and signal regulatory protein alpha (SIRPα) on macrophages is thought to hinder macrophage phagocytic activity, which can be blocked by combining siRNAs targeting SIRPα (siSIRPα) with simultaneous involvement of activating receptors like FcRs (Fc receptors) anti-programmed death-ligand 1 (anti-PD-L1). For this study, M1 macrophage-derived exosomes were used to deliver the siRNAs, isolated from lipopolysaccharide (LPS)-stimulated RAW264.7 cells and electroporated with siSIRPα.

View Article and Find Full Text PDF

Objective: Accumulating evidence suggests that microRNAs derived from macrophage exosomes can regulate the stemness and progression of cancer. However, the interaction mechanisms between HCC cells and tumor-associated macrophages remain unclear.

Methods: Exosomes were extracted from control or CD63 overexpression macrophages and co-cultured with HCC cells.

View Article and Find Full Text PDF

Gelatin methacryloyl hydrogel encapsulating molybdenum-inspired macrophage-derived exosomes accelerates wound healing via immune regulation and angiogenesis.

Int J Biol Macromol

December 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China. Electronic address:

Clinically, abnormal or delayed wound healing leads to functional disorders and disfiguring scars. A well-vascularized environment and an anti-inflammatory immune state are crucial during the healing process. Molybdenum (Mo) is an essential element for the human body in modulating metabolism, immune function and tissue repair.

View Article and Find Full Text PDF

Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools.

Int J Nanomedicine

December 2024

Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.

Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy.

View Article and Find Full Text PDF

M2-like macrophage-derived exosomes inhibit osteoclastogenesis via releasing miR-1227-5p.

Immunobiology

December 2024

Department of Periodontology, Changsha Stomatological Hospital, No. 389, Youyi Road, Tianxin District, Changsha 410004, China. Electronic address:

Macrophages play a pivotal role in regulating inflammatory response in periodontitis, a condition characterized by excessive osteoclast differentiation. This study aimed to investigate whether exosomes derived from M2 macrophages regulate osteoclast differentiation and to identify the underlying molecular mechanisms. Exosomes were isolated from M2 macrophages and used to treat osteoclasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!