Cells respond to DNA damage by activating complex signaling networks that decide cell fate, promoting not only DNA damage repair and survival but also cell death. We have developed a multiscale computational model that quantitatively links chemotherapy-induced DNA damage response signaling to cell fate. The computational model was trained and calibrated on extensive data from U2OS osteosarcoma cells, including the cell cycle distribution of the initial cell population, signaling data measured by Western blotting, and cell fate data in response to chemotherapy treatment measured by time-lapse microscopy. The resulting mechanistic model predicted the cellular responses to chemotherapy alone and in combination with targeted inhibitors of the DNA damage response pathway, which we confirmed experimentally. Computational models such as the one presented here can be used to understand the molecular basis that defines the complex interplay between cell survival and cell death and to rationally identify chemotherapy-potentiating drug combinations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/scisignal.aat0229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!