Rotating Bacteria on Solid Surfaces without Tethering.

Biophys J

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania. Electronic address:

Published: August 2018

Bacterial motion is strongly affected by the presence of a surface. One of the hallmarks of swimming near a surface is a defined curvature of bacterial trajectories, underlining the importance of counter rotations of the cell body and flagellum for locomotion of the microorganism. We find that there is another mode of bacterial motion on solid surfaces, i.e., self trapping due to fluid flows created by a rotating flagellum perpendicular to the surface. For a rod-like bacterium, such as Escherichia coli, this creates a peculiar situation in that the bacterium appears to swim along a minor axis of the cell body and is pressed against the surface. Although a full hydrodynamic theory is still lacking to explain the self-trapping phenomenon, the effect is intriguing and can be exploited to study a variety of biophysical phenomena of swimming bacteria. In particular, we showed that self-trapped E. coli cells display a chemotaxis response that is identical to the classical rotation assay in which antibodies are used to physically "glue" a flagellum to the surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6084641PMC
http://dx.doi.org/10.1016/j.bpj.2018.06.020DOI Listing

Publication Analysis

Top Keywords

solid surfaces
8
bacterial motion
8
cell body
8
surface
5
rotating bacteria
4
bacteria solid
4
surfaces tethering
4
tethering bacterial
4
motion presence
4
presence surface
4

Similar Publications

Protective Coating of Single-Crystalline Ni-Rich Cathode Enables Fast Charging in All-Solid-State Batteries.

ACS Nano

January 2025

Battery and Electrochemistry Laboratory (BELLA), Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.

Improving interfacial stability between cathode active material (CAM) and solid electrolyte (SE) is vital for developing high-performance all-solid-state batteries (ASSBs), with compatibility issues among the cell components representing a major challenge. CAM surface coating with a chemically inert ion conductor is a promising approach to suppress side reactions occurring at the cathode interfaces. Another strategy to mitigate mechanical degradation involves utilizing single-crystalline particle morphologies.

View Article and Find Full Text PDF

Cost-Effective Synthesis of Carbazole-Based Nanoporous Organic Polymers for SO Capture.

ACS Appl Mater Interfaces

January 2025

International Scientific and Technological Cooperation Base of Industrial Solid Waste Cyclic Utilization and Advanced Materials, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China.

Sulfur dioxide (SO), a pervasive air pollutant, poses significant environmental and health risks, necessitating advanced materials for its efficient capture. Nanoporous organic polymers (NOPs) have emerged as promising candidates; however, their development is often hindered by high synthesis temperatures, complex precursors, and limited SO selectivity. Herein, we report a room-temperature, cost-effective synthesis of carbazole-based nanoporous organic polymers (CNOPs) using 1,3,5-trioxane and paraldehyde, offering a significant advancement over traditional Friedel-Crafts alkylation methods.

View Article and Find Full Text PDF

Non-Hermitian Topology in Hermitian Topological Matter.

Phys Rev Lett

December 2024

University of Tokyo, Institute for Solid State Physics, Kashiwa, Chiba 277-8581, Japan.

Non-Hermiticity gives rise to distinctive topological phenomena absent in Hermitian systems. However, connection between such intrinsic non-Hermitian topology and Hermitian topology has remained largely elusive. Here, considering the bulk and boundary as an environment and system, respectively, we demonstrate that anomalous boundary states in Hermitian topological insulators exhibit non-Hermitian topology.

View Article and Find Full Text PDF

Gigahertz Surface Acoustic Wave Topological Rainbow in Nanoscale Phononic Crystals.

Phys Rev Lett

December 2024

Nanjing University, National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing 210093, China.

Precisely engineered gigahertz surface acoustic wave (SAW) trapping enables diverse and controllable interconnections with various quantum systems, which are crucial to unlocking the full potential of phonons. The topological rainbow based on synthetic dimension presents a promising avenue for facile and precise localization of SAWs. In this study, we successfully developed a monolithic gigahertz SAW topological rainbow by utilizing a nanoscale translational deformation as a synthetic dimension.

View Article and Find Full Text PDF

Purpose: Trophoblast cell-surface antigen 2 (Trop2) is overexpressed in various solid tumors and contributes to tumor progression, while its expression remains low in normal tissues. Trop2-targeting antibody-drug conjugate (ADC), sacituzumab govitecan-hziy (Trodelvy), has shown efficacy in targeting this antigen. Leveraging the enhanced specificity of ADCs, we conducted the first immunoPET imaging study of Trop2 expression in gastric cancer (GC) and triple-negative breast cancer (TNBC) models using Zr-labeled Trodelvy ([Zr]Zr-DFO-Trodelvy).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!