Hydrostatic pressure enhances gas solubility and potentially alters toxicity and risks of oil and gas releases to deep-sea organisms. This study has two primary objectives. First, the aquatic hazard of dissolved hydrocarbon gases is characterized using results of previously published laboratory and field studies and modeling. The target lipid model (TLM) is used to predict effects at ambient pressure, and results are compared to effect concentrations derived from extrapolation of liquid alkane hazard data. Second, existing literature data are used to quantify and predict pressure effects on toxicity using an extension of the TLM framework. Results indicate elevated pressure mitigates narcosis, particularly for sensitive species. A simple adjustment is proposed to allow TLM-based estimates of acute effect and TLM-derived HC5 values (concentrations intended to provide 95% species protection) for oil or gas constituents to be calculated at depth. Future applications, and opportunities and challenges for providing validation, are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2018.04.051 | DOI Listing |
J Hazard Mater
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
College of Light Industry and Food, Zhongkai University of Agriculture and Engineering/Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
As the global population continues to grow and the pressure on livestock and poultry supply increases, the oceans have become an increasingly important source of quality food for future generations. However, nutrient-rich aquatic product is susceptible to lipid oxidation during storage and transport, reducing its nutritional value and increasing safety risks. Therefore, identifying the specific effects of lipid oxidation on aquatic products has become particularly critical.
View Article and Find Full Text PDFEnviron Res
January 2025
University of St. Thomas, Department of Biology, Mail OWS 390, 2115 Summit Ave, Saint Paul, MN, 55105, USA.
Emerging organic contaminants (EOCs) are a growing concern for aquatic ecosystems, underscoring the need for advanced risk assessment methodologies. This study employed an integrated approach to evaluate the risks associated with 563 EOCs across 13 monitoring sites along the Sava River in Croatia. Sampling was conducted during the winter and spring months, spanning February to May.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China.
The widespread use of antimicrobial agent triclosan (TCS) poses significant health risks to both aquatic organisms and humans. The research on its neurotoxicity and underlying mechanisms is, however, limited. Here we first conducted a 32-day exposure experiment with five TCS concentrations (10, 30, 60, 90 and 120 µg/L) to investigate its impact on overall gene expression in Rana omeimontis larvae.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Environmental Protection Research Institute, Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China.
The removal of antimony from wastewater using traditional methods such as adsorption and membrane filtration generates large amounts of antimony-containing hazardous wastes, posing significant environmental threats. This study proposed a new treatment strategy to reductively remove and recover antimony from wastewater using an advanced UV/sulfite reduction process in the form of valuable strategic metalloid antimony (Sb(0)), thus preventing hazardous waste generation. The results indicated that more than 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!