Impact of pH variation of overlying water column on transport and transformation of Cu-sediment complexes in the bottom mangrove sediments was investigated by using different metal extraction studies. The total Cu concentration in the studied sediments varied from ~64 ± 1 to 78 ± 2 mg·kg. The sequential extraction study showed that a major part of the sedimentary Cu (85-90% of the total sedimentary Cu) was present within the structure of the sediments with minimum mobility and bioavailability. The redistribution of non-residual Cu among the different binding phases of the sediments was observed at different pH. It was found that Cu shifted from the different non-residual binding phases to the organic binding phase of the sediments at higher pH. Partial leaching of sedimentary Cu-SOM complexes (with increasing stability as determined by kinetic extraction study) was observed at higher pH. This study infers that increase in pH of overlying water column may release Cu-SOM complexes and increase the mobility of Cu-complexes in mangrove systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2018.03.054 | DOI Listing |
Sci Rep
December 2024
Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, #467 Zhongshan Road, Dalian, 116023, Liaoning, China.
Sodium-glucose co-transport protein 2 (SGLT2) inhibitors, a novel category of oral hypoglycemic agents, offer a promising outlook for individuals experiencing heart failure with reduced ejection fraction. Evidence is emerging that highlights their potential in alleviating myocardial fibrosis and oxidative stress. However, the precise mechanisms through which SGLT2 inhibitors influence myocardial fibrosis induced by angiotensin II (Ang II) or transforming growth factor-β1 (TGF-β1) are not fully understood.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:
Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, P.R. China.
The intraprostatic inflammatory infiltrate is characterized by Th1 CD4 T cells, and its molecular mechanism is not well defined. This study explored the mechanisms responsible for the alteration of Th1/Th17 differentiation of CD4 T cells in chronic non-bacterial prostatitis (CNP). CNP rats were induced by the administration of testosterone and 17β-estradiol.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Faculty of Mechatronics, Informatics, and Interdisciplinary Studies, Technical University of Liberec, 46001 Liberec, Czech Republic.
There are three components to every environmental protection system: monitoring, estimation, and control. One of the main toxic gases with considerable effects on human health is NO, which is released into the atmosphere by industrial activities and the transportation network. In the present research, a NO sensor is designed based on FeO piperidine-4-sulfonic acid grafted onto a reduced graphene oxide FeO@rGO-N-(piperidine-4-SOH) nanocomposite, due to the highly efficient detection of pollution in the air.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing 400030, China.
In this study, we have proposed an electrochemiluminescence (ECL) signal amplification system which is based on two-dimensional (2D) flower-like CdS@Co/Mo-MOF composites as a co-reaction accelerator of the g-CN/SO system for ultrasensitive detection of chlorpromazine hydrochloride (CPH). Specifically, the 2D flower-like Co/Mo-MOF with mesoporous alleviated the aggregation of CdS NPs while simultaneously fostering reactant-active site contact and improving the reactant-product transport rate. This allowed the material to act as a novel co-reaction accelerator, speeding up the transformation of the SO into SO and enhancing the cathodic ECL emission of g-CN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!