A novel EPM2A mutation yields a slow progression form of Lafora disease.

Epilepsy Res

IBV-CSIC. Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain; CIBERER. Centro de Investigación Biomédica en Red de Enfermedades Raras, Valencia, Spain; Lafora Epilepsy Cure Initiative, USA. Electronic address:

Published: September 2018

Lafora disease (LD, OMIM 254780) is a rare disorder characterized by epilepsy and neurodegeneration leading patients to a vegetative state and death, usually within the first decade from the onset of the first symptoms. In the vast majority of cases LD is related to mutations in either the EPM2A gene (encoding the glucan phosphatase laforin) or the EPM2B gene (encoding the E3-ubiquitin ligase malin). In this work, we characterize the mutations present in the EPM2A gene in a patient displaying a slow progression form of the disease. The patient is compound heterozygous with Y112X and N163D mutations in the corresponding alleles. In primary fibroblasts obtained from the patient, we analyzed the expression of the mutated alleles by quantitative real time PCR and found slightly lower levels of expression of the EPM2A gene respect to control cells. However, by Western blotting we were unable to detect endogenous levels of the protein in crude extracts from patient fibroblasts. The Y112X mutation would render a truncated protein lacking the phosphatase domain and likely degraded. Since minute amounts of laforin-N163D might still play a role in cell physiology, we analyzed the biochemical characteristics of the N163D mutation. We found that recombinant laforin N163D protein was as stable as wild type and exhibited near wild type phosphatase activity towards biologically relevant substrates. On the contrary, it showed a severe impairment in the interaction profile with previously identified laforin binding partners. These results lead us to conclude that the slow progression of the disease present in this patient could be either due to the specific biochemical properties of laforin N163D or to the presence of alternative genetic modifying factors separate from pathogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6087489PMC
http://dx.doi.org/10.1016/j.eplepsyres.2018.07.003DOI Listing

Publication Analysis

Top Keywords

slow progression
12
epm2a gene
12
progression form
8
lafora disease
8
mutations epm2a
8
gene encoding
8
disease patient
8
laforin n163d
8
wild type
8
patient
5

Similar Publications

The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R).

View Article and Find Full Text PDF

Hypoxia triggers blood-brain barrier disruption and a strong microglial activation response around leaky cerebral blood vessels. These events are greatly amplified in aged mice which is translationally relevant because aged patients are far more likely to suffer hypoxic events from heart or lung disease, and because of the pathogenic role of blood-brain barrier breakdown in vascular dementia. Importantly, it is currently unclear if disrupted cerebral blood vessels spontaneously repair and if they do, whether surrounding microglia deactivates.

View Article and Find Full Text PDF

Efficacy of Anti-Vascular Endothelial Growth Factor (VEGF) Therapy for Age-Related Macular Degeneration.

Cureus

November 2024

General Medicine, Barts Health National Health Service (NHS) Trust, London, GBR.

Anti-vascular endothelial growth factor (VEGF) drugs are used for various diseases with abnormal proliferation of blood vessels. The use of these drugs in wet age-related macular degeneration (AMD) has proven to be highly effective. Various factors contribute to the efficacy of these drugs in different settings.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!