Present study was carried out to investigate the 'anxiolytic-like' effect of pyridoxine in mice. Pyridoxine (90, 180 and 360 mg/kg) was administered by intraperitoneal (i.p.) route to the experimental mice and anxiety-related behavior was evaluated by light and dark box (LDB) and elevated plus maze (EPM) models. Glutamate, GABA and nitrite levels were also determined in the isolated whole brain of mice. It was observed that pyridoxine (180 mg/kg, i.p.) exerted 'anxiolytic-like' effect in mice in EPM and LDB models. Also, there was a significant increase in the levels of GABA whereas; the levels of glutamate and nitrite were decreased as compared to the control group. Administration of pentamethylene tetrazole (PTZ; 20 mg/kg, i.p.) exerted anxiogenic effects in mice, but the combination of PTZ and pyridoxine (180 mg/kg, i.p.) abolished the 'anxiolytic-like' effect of pyridoxine, thereby, suggesting the possible role of GABA in the 'anxiolytic-like' effect of pyridoxine in mice. Further, the influence of NO-sGC-cGMP pathway was investigated by administering the sub-effective dose of pyridoxine in combination with sub-threshold doses of NO modulators i.e. l‑arginine (50 mg/kg, i.p.; NO donor); methylene blue (1 mg/kg, i.p.; NO and soluble guanylate cyclase inhibitor) and sildenafil (1 mg/kg, i.p.; phosphodiesterase inhibitor and cGMP modulator). It was observed that the 'anxiolytic-like' effect of pyridoxine in mice was counteracted by the NO donor and potentiated by the NO inhibitors. Thus, the present study confirmed the involvement of GABAergic and NO-sGC-cGMP pathway in the 'anxiolytic-like' effect of pyridoxine in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pbb.2018.06.001DOI Listing

Publication Analysis

Top Keywords

pyridoxine mice
20
'anxiolytic-like' pyridoxine
20
no-sgc-cgmp pathway
12
mice
9
pyridoxine
9
elevated maze
8
light dark
8
dark box
8
involvement gabaergic
8
gabaergic no-sgc-cgmp
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!