Serotonin receptor regulation as a potential mechanism for sexually dimorphic oxytocin dysregulation in a model of Autism.

Brain Res

Graduate Program in Developmental and Brain Sciences, University of Massachusetts Boston, Boston, MA 02125, USA; Psychology Department, University of Massachusetts Boston, Boston, MA 02125, USA. Electronic address:

Published: December 2018

Perinatal administration of serotonin (5HT) agonist 5-methoxytryptamine (5MT) induces developmental hyperserotonemia (DHS; elevated blood serotonin) and produces behavioral and neurochemical changes in rats relevant to Autism Spectrum Disorder (ASD), such as oxytocin dysregulation. Disruption of the oxytocin system may underlie many of the social deficits present in ASD individuals, thus we investigated the mechanism(s) underlying DHS-induced oxytocin dysregulation. The most parsimonious mechanism of 5HT action would be alteration of 5HT receptors on oxytocin cells; 5HT is known to influence cell survival as well as influence oxytocin release via 5HT and 5HT receptors, which co-localize in oxytocin-expressing (OXT+) cells in the paraventricular nucleus (PVN) of the hypothalamus. We report that both male and female DHS rats have a lower percentage of OXT+ cells co-localized with excitatory 5HT receptors than control animals, while only DHS females have a higher percentage of OXT+ cells co-localized with inhibitory 5HT receptors compared to controls. Importantly, DHS also reduces the number of OXT+ cells in the PVN of adult male, but not female, rats. This pattern suggests that females, but not males, can regulate 5HT receptors in response to DHS in a manner that promotes oxytocin cell survival and functional efficiency. In addition, it has been previously reported that DHS alters normal juvenile play, especially in males, thus we also tested play partner preference among juvenile control and DHS males. Sex differences observed using the DHS model of ASD add to its validity, given the pronounced male sex bias in the prevalence of ASD, and emphasize the need for inclusion of both sexes in ASD research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2018.07.020DOI Listing

Publication Analysis

Top Keywords

5ht receptors
20
oxt+ cells
16
oxytocin dysregulation
12
5ht
9
dhs
8
cell survival
8
male female
8
percentage oxt+
8
cells co-localized
8
oxytocin
7

Similar Publications

The fate of the pollutants in aquatic environment is closely related to colloids, and the carrier effect of colloids on pollutants not only affects their bioaccumulation, but may also affect their toxicity. In this study, the effects of natural colloid with different components on the biological toxicity of benzophenone-3 (BP3) to zebrafish larvae (Diano rerio) were studied. BP3 caused oxidative stress damage, thyroid system disorders and neurotoxicity in zebrafish larvae.

View Article and Find Full Text PDF

Corticotropin-releasing factor (CRF) and urocortins (UCN1, UCN2 and UCN3) belong to the same CRF family of neuropeptides. They regulate the neuroendocrine, autonomic and behavioral responses to stress via two CRF receptors (CRF1 and CRF2). Stress, anxiety and depression affects the activity of the hypothalamic-pituitary-adrenal (HPA) axis and the serotoninergic neurotransmission, both being regulated by CRF and CRF-related peptides.

View Article and Find Full Text PDF

Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.

View Article and Find Full Text PDF

There is increasing interest in the potential therapeutic role of 5-HT (serotonin) in the treatment of neurodegenerative diseases, which are characterized by the progressive degeneration and death of nerve cells. 5-HT is a vital neurotransmitter that plays a central role in regulating mood, cognition, and various physiological processes in the body. Disruptions in the 5-HT system have been linked to several neurological and psychiatric disorders, making it an attractive target for therapeutic intervention.

View Article and Find Full Text PDF

Background/objectives: Rodents provide a useful translational model of fear- and anxiety-related behaviors. Previously stressed animals exhibit physiological and behavioral stress responses that parallel those observed in anxious humans. Patients diagnosed with post-traumatic stress disorder (PTSD) present with a spectrum of debilitating anxiety symptoms that result from exposure to one or more traumatic events, with individuals exposed to early adverse experiences and women having increased vulnerability for diagnoses; however, the mechanisms of this increased vulnerability remain unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!