AI Article Synopsis

  • This study presents a new method for combining quantum mechanics and molecular mechanics (QM/MM) in a polarizable environment, focusing on Møller-Plesset perturbation theory (MP2) and Algebraic Diagrammatic Construction (ADC(2)) for calculating energy states and gradients.
  • The implementation uses a polarizable embedded Hartree-Fock wave function as a starting point and incorporates polarization-correlation effects through an approximate density coupling.
  • The method is applied to analyze photophysical properties of host-guest complexes, showing that it accurately reproduces ground state geometries and captures excited state effects and energy gaps with reasonable precision.

Article Abstract

An implementation of a QM/MM embedding in a polarizable environment is presented for second-order Møller-Plesset perturbation theory, MP2, for ground state energies and molecular gradients and for the second-order Algebraic Diagrammatic Construction, ADC(2), for excitation energies and excited state molecular gradients. In this implementation of PE-MP2 and PE-ADC(2), the polarizable embedded Hartree-Fock wave function is used as uncorrelated reference state. The polarization-correlation cross terms for the ground and excited states are included in this model via an approximate coupling density. A Lagrangian formulation is used to derive the relaxed electron densities and molecular gradients. The resolution-of-the-identity approximation speeds up the calculation of four-index electron repulsion integrals in the molecular orbital basis. As a first application, the method is used to study the photophysical properties of host-guest complexes where the accuracy and weaknesses of the model are also critically examined. It is demonstrated that the ground state geometries of the full quantum mechanical calculation for the supermolecule can be well reproduced. For excited state geometries, the deviations from the supermolecular calculation are slightly larger, but still the environment effects are captured qualitatively correctly, and energy gaps between the ground and excited states are obtained with sufficient accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.8b00396DOI Listing

Publication Analysis

Top Keywords

excited state
12
molecular gradients
12
polarizable embedded
8
second-order algebraic
8
algebraic diagrammatic
8
diagrammatic construction
8
ground state
8
ground excited
8
excited states
8
state geometries
8

Similar Publications

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Controlling the light emitted by individual molecules is instrumental to a number of advanced nanotechnologies ranging from super-resolution bioimaging and molecular sensing to quantum nanophotonics. Molecular emission can be tailored by modifying the local photonic environment, for example, by precisely placing a single molecule inside a plasmonic nanocavity with the help of DNA origami. Here, using this scalable approach, we show that commercial fluorophores may experience giant Purcell factors and Lamb shifts, reaching values on par with those recently reported in scanning tip experiments.

View Article and Find Full Text PDF

Light-driven molecular rotary motors are nanometric machines able to convert light into unidirectional motions. Several types of molecular motors have been developed to better respond to light stimuli, opening new avenues for developing smart materials ranging from nanomedicine to robotics. They have great importance in the scientific research across various disciplines, but a detailed comprehension of the underlying ultrafast photophysics immediately after photo-excitation, that is, Franck-Condon region characterization, is not fully achieved yet.

View Article and Find Full Text PDF

We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.

View Article and Find Full Text PDF

Transducers used in acoustic logging while drilling (ALWD) must be mounted on a drill collar, and their radiation performance is dependent on the employed mounting method. Herein, the complex transmitting voltage response of a while-drilling (WD) monopole acoustic source was calculated through finite-element harmonic-response analysis. Subsequently, the acoustic pressure waveform radiated by the source driven by a half-sine excitation voltage signal was calculated using the complex transmitting voltage response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!