Retinoic acid receptor (RAR) signaling regulates bone structure and hematopoiesis through intrinsic and extrinsic mechanisms. This study aimed to establish how early in the osteoblast lineage loss of RARγ (Rarg) disrupts the bone marrow microenvironment. Bone structure was analyzed by micro-computed tomography (μCT) in Rarg mice and mice with Rarg conditional deletion in Osterix-Cre-targeted osteoblast progenitors or Prrx1-Cre-targeted mesenchymal stem cells. Rarg tibias exhibited less trabecular and cortical bone and impaired longitudinal and radial growth. The trabecular bone and longitudinal, but not radial, growth defects were recapitulated in Prrx1:Rarg mice but not Osx1:Rarg mice. Although both male and female Prrx1:Rarg mice had low trabecular bone mass, males exhibited increased numbers of trabecular osteoclasts and Prrx1:Rarg females had impaired mineral deposition. Both male and female Prrx1:Rarg growth plates were narrower than controls and their epiphyses contained hypertrophic chondrocyte islands. Flow cytometry revealed that male Prrx1:Rarg bone marrow exhibited elevated pro-B and pre-B lymphocyte numbers, accompanied by increased Cxcl12 expression in bone marrow cells. Prrx1:Rarg bone marrow also had elevated megakaryocyte-derived Vegfa expression accompanied by smaller sinusoidal vessels. Thus, RARγ expression by Prrx1-Cre-targeted cells directly regulates endochondral bone formation and indirectly regulates tibial vascularization. Furthermore, RARγ expression by Prrx1-Cre-targeted cells extrinsically regulates osteoclastogenesis and B lymphopoiesis in male mice. © 2018 American Society for Bone and Mineral Research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbmr.3558 | DOI Listing |
Arterioscler Thromb Vasc Biol
December 2024
Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).
Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Introduction: Extensive trauma frequently disrupts endometrial regeneration by diminishing endometrial stem cells/progenitor cells, affecting female fertility. While bone marrow mesenchymal stem cell (BMSC) transplantation has been suggested as an approach to address endometrial injury, it comes with certain limitations. Recent advancements in endometrial epithelial organoids (EEOs) have displayed encouraging potential for endometrial regeneration.
View Article and Find Full Text PDFTrifunctional protein deficiency (TFP) is a disorder of fatty acid beta-oxidation associated with metabolic, cardiac, and liver dysfunction in severe forms. We present two siblings diagnosed by newborn screening and confirmed by biochemical testing at birth. Their clinical course was complicated by recurrent rhabdomyolysis, retinopathy, and hypoparathyroidism.
View Article and Find Full Text PDFPharmgenomics Pers Med
December 2024
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Multiple myeloma (MM) is a hematological malignancy characterized by the clonal proliferation of malignant plasma cells within the bone marrow. The disease's complexity is underpinned by a variety of genetic and molecular abnormalities that drive its progression.
Methods: This review was conducted through a state-of-The-art literature search, primarily utilizing PubMed to gather peer-reviewed articles.
Sheng Wu Gong Cheng Xue Bao
December 2024
State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, Gansu, China.
This study developed ferritin-based nanoparticles carrying the African swine fever virus (ASFV) p30 protein and evaluated their immunogenicity, aiming to provide an experimental basis for the research on nanoparticle vaccines against ASFV. Initially, the gene sequences encoding the p30 protein and SpyTag were fused and inserted into the pCold-I vector to create the pCold-p30 plasmid. The gene sequences encoding SpyCatcher and ferritin were fused and then inserted into the pET-28a(+) vector to produce the pET-F-np plasmid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!