Brain is a potential sanctuary for subtype C HIV-1 irrespective of ART treatment outcome.

PLoS One

Nebraska Center for Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Nebraska, United States of America.

Published: January 2019

Subtype C HIV-1 is responsible for the largest proportion of people living with HIV-1 infection. However, there is limited information about the roles of the brain and its cell types as a potential sanctuary for this subtype and how the sanctuary may be affected by the administration of anti-retroviral therapy (ART). To address this issue, we collected postmortem brain tissues from ART treated HIV-1 infected Zambian individuals who experienced complete viral suppression and those who did not. Tissues from various brain compartments were collected from each individual as frozen and formalin-fixed paraffin embedded brain specimens, for detection and quantification of HIV-1 genomes and identification of the infected cell type. Genomic DNA and RNA were extracted from frozen brain tissues. The extracted DNA and RNA were then subjected to droplet digital PCR for HIV-1 quantification. RNA/DNAscope in situ hybridization (ISH) for HIV-1 was performed on formalin-fixed paraffin embedded brain tissues in conjugation with immunohistochemistry to identify the infected cell types. Droplet digital PCR revealed that HIV-1 gag DNA and RNA were detectable in half of the cases studied regardless of ART success or failure. The presence of HIV-1 lacked specific tissue compartmentalization since detection was random among various brain tissues. When combined with immunohistochemistry, RNA/DNAscope ISH demonstrated co-localization of HIV-1 DNA with CD68 expressing cells indicative of microglia or peripheral macrophage. Our study showed that brain is a potential sanctuary for subtype C HIV-1, as HIV-1 can be detected in the brain of infected individuals irrespective of ART treatment outcome and no compartmentalization of HIV-1 to specific brain compartments was evident.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057662PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201325PLOS

Publication Analysis

Top Keywords

brain tissues
16
hiv-1
13
potential sanctuary
12
sanctuary subtype
12
subtype hiv-1
12
dna rna
12
brain
11
brain potential
8
irrespective art
8
art treatment
8

Similar Publications

Background: Radiotherapy as a complement or an alternative to neurosurgery has a central role in the treatment of skull base grade I-II meningiomas. Radiotherapy techniques have improved considerably over the last two decades, becoming more effective and sparing more and more the healthy tissue surrounding the tumour. Currently, hypo-fractionated stereotactic radiotherapy (SRT) for small tumours and normo-fractionated intensity-modulated radiotherapy (IMRT) or proton-therapy (PT) for larger tumours are the most widely used techniques.

View Article and Find Full Text PDF

Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) adversely affects various organs, including the brain and its blood barrier. In addition to the brain, hyperglycemia damages the testes. The testes possess blood-tissue barriers that share common characteristics and proteins with the blood-brain barrier (BBB), including breast cancer-resistant protein (BCRP).

View Article and Find Full Text PDF

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

The diagnostic landscape of brain tumors integrates comprehensive molecular markers alongside traditional histopathological evaluation. DNA methylation and next-generation sequencing (NGS) have become a cornerstone in central nervous system (CNS) tumor classification. A limiting requirement for NGS and methylation profiling is sufficient DNA quality and quantity, which restrict its feasibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!