Microbial Ecology and Water Chemistry Impact Regrowth of Opportunistic Pathogens in Full-Scale Reclaimed Water Distribution Systems.

Environ Sci Technol

Via Department of Civil and Environmental Engineering , Virginia Tech , Blacksburg , Virginia 24061 , United States.

Published: August 2018

Need for global water security has spurred growing interest in wastewater reuse to offset demand for municipal water. While reclaimed (i.e., nonpotable) microbial water quality regulations target fecal indicator bacteria, opportunistic pathogens (OPs), which are subject to regrowth in distribution systems and spread via aerosol inhalation and other noningestion routes, may be more relevant. This study compares the occurrences of five OP gene markers ( Acanthamoeba spp., Legionella spp., Mycobacterium spp., Naegleria fowleri, Pseudomonas aeruginosa) in reclaimed versus potable water distribution systems and characterizes factors potentially contributing to their regrowth. Samples were collected over four sampling events at the point of compliance for water exiting treatment plants and at five points of use at four U.S. utilities bearing both reclaimed and potable water distribution systems. Reclaimed water systems harbored unique water chemistry (e.g., elevated nutrients), microbial community composition, and OP occurrence patterns compared to potable systems examined here and reported in the literature. Legionella spp. genes, Mycobacterium spp. genes, and total bacteria, represented by 16S rRNA genes, were more abundant in reclaimed than potable water distribution system samples ( p ≤ 0.0001). This work suggests that further consideration should be given to managing reclaimed water distribution systems with respect to nonpotable exposures to OPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.8b02818DOI Listing

Publication Analysis

Top Keywords

water distribution
20
distribution systems
20
water
12
reclaimed water
12
potable water
12
water chemistry
8
opportunistic pathogens
8
legionella spp
8
mycobacterium spp
8
reclaimed potable
8

Similar Publications

Production of Hydrophobic Microparticles at Safe-To-Inject Sizes for Intravascular Administration.

Pharmaceutics

January 2025

Laboratory of Biointerface Chemistry, Department of Molecules and Materials, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, 7522NB Enschede, The Netherlands.

Hydrophobic microparticles are one of the most versatile structures in drug delivery and tissue engineering. These constructs offer a protective environment for hydrophobic or water-sensitive compounds (e.g.

View Article and Find Full Text PDF

Exploring the changes in plant functional traits and their relationship with the environment in karst climax communities across different latitudes can enhance our understanding of how these communities respond to environmental gradients. In this study, we focus on climax karst climax plant communities in Guizhou Province, China. We selected three sample sites located at varying latitudes and analyzed the variations in functional traits of the plant communities at these latitudes.

View Article and Find Full Text PDF

Roots play essential roles in the acquisition of water and minerals from soils in higher plants. However, water or nutrient limitation can alter plant root morphology. To clarify the spatial distribution characteristics of essential nutrients in citrus roots and the influence mechanism of micronutrient deficiency on citrus root morphology and architecture, especially the effects on lateral root (LR) growth and development, two commonly used citrus rootstocks, trifoliate orange ( L.

View Article and Find Full Text PDF

Patterns and Drivers of Surface Energy Flux in the Alpine Meadow Ecosystem in the Qilian Mountains, Northwest China.

Plants (Basel)

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (), air temperature, vapor pressure deficit (), wind speed (), and soil water content () influence sensible heat flux () and latent heat flux (). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!