Interpreting the functional impact of noncoding variants is an ongoing challenge in the field of genome analysis. With most noncoding variants associated with complex traits and disease residing in regulatory regions, altered transcription factor (TF) binding has been proposed as a mechanism of action. It is therefore imperative to develop methods that predict the impact of noncoding variants at TF binding sites (TFBSs). Here, we describe the update of our MANTA database that stores: 1) TFBS predictions in the human genome, and 2) the potential impact on TF binding for all possible single nucleotide variants (SNVs) at these TFBSs. TFBSs were predicted by combining experimental ChIP-seq data from ReMap and computational position weight matrices (PWMs) derived from JASPAR. Impact of SNVs at these TFBSs was assessed by means of PWM scores computed on the alternate alleles. The updated database, MANTA2, provides the scientific community with a critical map of TFBSs and SNV impact scores to improve the interpretation of noncoding variants in the human genome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057437PMC
http://dx.doi.org/10.1038/sdata.2018.141DOI Listing

Publication Analysis

Top Keywords

noncoding variants
16
transcription factor
8
factor binding
8
impact noncoding
8
human genome
8
snvs tfbss
8
impact
5
variants
5
tfbss
5
manta2 update
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!