Detection of novel germline mutations in six breast cancer predisposition genes by targeted next-generation sequencing.

Hum Mutat

Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.

Published: October 2018

In this study, a customized amplicon-based target sequencing panel was designed to enrich the whole exon regions of six genes associated with the risk of breast cancer. Targeted next-generation sequencing (NGS) was performed for 146 breast cancer patients (BC), 71 healthy women with a family history of breast cancer (high risk), and 55 healthy women without a family history of cancer (control). Sixteen possible disease-causing mutations on four genes were identified in 20 samples. The percentages of possible disease-causing mutation carriers in the BC group (8.9%) and in the high-risk group (8.5%) were higher than that in the control group (1.8%). The BRCA1 possible disease-causing mutation group had a higher prevalence in family history and triple-negative breast cancer, while the BRCA2 possible disease-causing mutation group was younger and more likely to develop axillary lymph node metastasis (P < 0.05). Among the 146 patients, 47 with a family history of breast cancer were also sequenced with another 14 moderate-risk genes. Three additional possible disease-causing mutations were found on PALB2, CHEK2, and PMS2 genes, respectively. The results demonstrate that the six-gene targeted NGS panel may provide an approach to assess the genetic risk of breast cancer and predict the clinical prognosis of breast cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23597DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
family history
12
disease-causing mutation
12
targeted next-generation
8
next-generation sequencing
8
healthy women
8
women family
8
mutation group
8
cancer
6
breast
5

Similar Publications

Colorectal cancer (CRC) is among the most common cancer types for both sexes. Tripartite motif 36 (TRIM36) has been reported to be aberrantly expressed in several cancer types, suggesting its involvement in cancer progression. However, the role of TRIM36 in the colorectal carcinogenesis remain unknown.

View Article and Find Full Text PDF

Most of the triple negative phenotype or basal-like molecular subtypes of breast cancers are associated with aggressive clinical behaviour and show poor disease prognosis. Current treatment options are constrained, emphasizing the need for novel combinatorial therapies for this particular tumor subtype. Our group has demonstrated that functionally active p21 activated kinase 1 (PAK1) exhibits significantly higher expression levels in clinical triple negative breast cancer (TNBC) samples compared to other subtypes, as well as adjacent normal tissues.

View Article and Find Full Text PDF

Cardamonin anticancer effects through the modulation of the tumor immune microenvironment in triple-negative breast cancer cells.

Am J Cancer Res

December 2024

Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.

The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.

View Article and Find Full Text PDF

N staging systems are paramount clinical features for colorectal cancer (CRC). In N1 stage (N1) CRC, patients present with a limited number of metastatic lymph nodes, yet their prognoses vary widely. The tumor invasion proportion of lymph nodes (TIPLN) has gained attention, but its prognostic value in N1 CRC remains unclear.

View Article and Find Full Text PDF

Advancing precision and personalized breast cancer treatment through multi-omics technologies.

Am J Cancer Res

December 2024

School of Basic Medical Sciences, Jiamusi University No. 258, Xuefu Street, Xiangyang District, Jiamusi 154007, Heilongjiang, China.

Breast cancer is the most common malignant tumour in women, with more than 685,000 women dying of breast cancer each year. The heterogeneity of breast cancer complicates both treatment and diagnosis. Traditional methods based on histopathology and hormone receptor status are now no longer sufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!