Electronegativity-a perspective.

J Mol Model

Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.

Published: July 2018

Electronegativity is a very useful concept but it is not a physical observable; it cannot be determined experimentally. Most practicing chemists view it as the electron-attracting power of an atom in a molecule. Various formulations of electronegativity have been proposed on this basis, and predictions made using different formulations generally agree reasonably well with each other and with chemical experience. A quite different approach, loosely linked to density functional theory, is based on a ground-state free atom or molecule, and equates electronegativity to the negative of an electronic chemical potential. A problem that is encountered with this approach is the differentiation of a noncontinuous function. We show that this approach leads to some results that are not chemically valid. A formulation of atomic electronegativity that does prove to be effective is to express it as the average local ionization energy on an outer contour of the atom's electronic density.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-018-3740-6DOI Listing

Publication Analysis

Top Keywords

atom molecule
8
electronegativity-a perspective
4
electronegativity
4
perspective electronegativity
4
electronegativity concept
4
concept physical
4
physical observable
4
observable determined
4
determined experimentally
4
experimentally practicing
4

Similar Publications

Engineering a Novel NIR RNA-Specific Probe for Tracking Stress Granule Dynamics in Living Cells.

Anal Chem

January 2025

Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.

Real-time monitoring of the dynamics of cytosolic RNA-protein condensates, termed stress granules (SGs), is vital for understanding their biological roles in stress response and related disease treatment but is challenging due to the lack of simple and accurate methods. Compared with protein visualization that requires complex transfection procedures, direct RNA labeling offers an ideal alternative for tracking SG dynamics in living cells. Here, we propose a novel molecular design strategy to construct a near-infrared RNA-specific fluorescent probe () for tracking SGs in living cells.

View Article and Find Full Text PDF

A comprehensive approach enabling a quantitative interpretation of poly-l-arginine (PARG) adsorption kinetics at solid/electrolyte interfaces was developed. The first step involved all-atom molecular dynamics (MD) modeling of physicochemical characteristics yielding PARG molecule conformations, its contour length, and the cross-section area. It was also shown that PARG molecules, even in concentrated electrolyte solutions (100 mM NaCl), assume a largely elongated shape with an aspect ratio of 36.

View Article and Find Full Text PDF

Solvent-Responsive Glass Transition Behavior of Polyelectrolyte Complexes.

Macromolecules

January 2025

Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.

Polyelectrolyte complexes (PECs) have attracted considerable attention owing to their unique physicochemical properties and potential applications as smart materials. Herein, the glass transitions of PECs solvated with varying alcohols are investigated in poly(diallyldimethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes by using modulated differential scanning calorimetry (MDSC). Solvents with one or two hydroxyl groups are selected to examine the effect of PAA-solvent interactions on the glass transition temperature ( ).

View Article and Find Full Text PDF

The reactivation of heterotrimeric protein phosphatase 2A (PP2A) through small molecule activators is of interest to therapeutic intervention due to its dysregulation, which is linked to chronic conditions. This study focuses on the PP2A scaffold subunit PR65 and a small molecule activator, ATUX-8385, designed to bind directly to this subunit. Using a label-free single-molecule approach with nanoaperture optical tweezers (NOT), we quantify its binding, obtaining a dissociation constant of 13.

View Article and Find Full Text PDF

Alchemical free energy methods using molecular mechanics (MM) force fields are essential tools for predicting thermodynamic properties of small molecules, especially via free energy calculations that can estimate quantities relevant for drug discovery such as affinities, selectivities, the impact of target mutations, and ADMET properties. While traditional MM forcefields rely on hand-crafted, discrete atom types and parameters, modern approaches based on graph neural networks (GNNs) learn continuous embedding vectors that represent chemical environments from which MM parameters can be generated. Excitingly, GNN parameterization approaches provide a fully end-to-end differentiable model that offers the possibility of systematically improving these models using experimental data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!