PARP3 inhibitors ME0328 and olaparib potentiate vinorelbine sensitization in breast cancer cell lines.

Breast Cancer Res Treat

Montreal Centre for Experimental Therapeutics in Cancer Segal Cancer Center, Lawrence Panasci & Raquel Aloyz Segal Cancer Center, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, 3755 Cote Ste Catherine, Montréal, QC, H3T 1E2, Canada.

Published: November 2018

Purpose: PARP-3 is member of the PARP family of poly (ADP-ribose) polymerases involved in ADPribosylation. PARPs are involved in the basic mechanisms of DNA repair. PARP3, a critical player for efficient mitotic progression, is required for the stabilization of the mitotic spindle by regulation of the mitotic components, NuMA and Tankyrase 1.

Methods: The sensitization effect of vinorelbine on PARP3 inhibition-induced cytotoxicity was assessed by the SRB assay. The contribution of programed cell death and cell cycle arrest to the sensitization effect were determined by assessing changes in Annexin V, a marker of apoptosis. Alterations in cell cycle progression were assessed by cell cycle analysis. We used immunofluorescence to assess the effect of vinorelbine and/or PARP3 inhibitors on tubulin and microtubule depolarization. The PARP3 chemiluminescent assay kit was used for PARP3 activity.

Results: PARP3 inhibitors sensitize breast cancer cells to vinorelbine, a vinca alkaloid used in the treatment of metastatic breast cancer. Olaparib which was originally described as a PARP1 and 2 inhibitor has recently been shown to be a potent PARP3 inhibitor while ME0328 is a more selective PARP3 inhibitor. The combination of vinorelbine with nontoxic concentrations of ME0328 or olaparib reduces vinorelbine resistance by 10 and 17 fold, respectively, potentiating vinorelbine-induced arrest at the G2/M boundary. In addition, PARP3 inhibition potentiates vinorelbine interaction with tubulin. Furthermore, olaparib or ME0328 potentiates vinorelbine-induced PARP3 inhibition, mitotic arrest, and apoptosis.

Conclusion: Our results indicated this approach with PARP3 inhibitors and vinorelbine is unique and promising for breast cancer patients with metastases. This combination could significantly increase the survival of breast cancer patients with metastases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-018-4888-6DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
parp3 inhibitors
16
parp3
12
cell cycle
12
me0328 olaparib
8
vinorelbine
8
parp3 inhibitor
8
parp3 inhibition
8
cancer patients
8
patients metastases
8

Similar Publications

V474I germline variant drives breast cancer metastasis.

Life Metab

February 2025

Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

View Article and Find Full Text PDF

Purpose: The aggressive nature of a tumor is presumably its inherent one, but different environmental cues can manipulate it in many ways. In this context, the influence of metabolic stresses on tumor behavior needs to be analyzed to understand their far-reaching implications on tumor aggression and dormancy. This work investigates different facets of the tumor, such as tumorigenic capacity, tumor phenotype, and migration, under multiple metabolic stress conditions.

View Article and Find Full Text PDF

Background: According to statistics, the incidence of proximal gastric cancer has gradually increased in recent years, posing a serious threat to human health. Tubular gastroesophageal anastomosis and double-channel anastomosis are two relatively mature anti-reflux procedures. A comparison of these two surgical procedures, tubular gastroesophageal anastomosis and double-channel anastomosis, has rarely been reported.

View Article and Find Full Text PDF

An Optimized Protocol for Simultaneous Propagation of Patient-derived Organoids and Matching CAFs.

Bio Protoc

January 2025

Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Recurrent hormone receptor-positive (HR+) breast cancer is a leading cause of cancer mortality in women. Recurrence and resistance to targeted therapies have been difficult to study due to the long clinical course of the disease, the complex nature of resistance, and the lack of clinically relevant model systems. Existing models are limited to a few HR+ cell lines, organoid models, and patient-derived xenograft models, all lacking components of the human tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!