Iron is an essential nutrient for bacterial survival and thus higher iron levels may precipitate bacterial infections. We investigated the association between the serum iron level and prognosis in patients with sepsis by using the single-centre Medical Information Mart for Intensive Care III (MIMIC-III) database. Sepsis patients with iron parameters measured on ICU admission were included and stratified according to quartiles of serum iron levels. A total of 1,891 patients diagnosed with sepsis according to the Sepsis-3 criteria were included in this study, 324 of whom were septic shock. After adjusting for confounding variables, higher iron quartile was associated with an increase in 90-day mortality in the Cox regression analysis. Moreover, a stepwise increase in the risk of 90-day mortality was observed as the quartiles of serum iron levels increased in the patients with sepsis. In conclusion, higher serum iron levels were independently associated with increased 90-day mortality in this large cohort of patients with sepsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056487PMC
http://dx.doi.org/10.1038/s41598-018-29353-2DOI Listing

Publication Analysis

Top Keywords

serum iron
20
patients sepsis
16
iron levels
16
90-day mortality
12
iron
9
iron level
8
associated increased
8
higher iron
8
quartiles serum
8
patients
6

Similar Publications

Unlabelled: Iron deficiency anaemia (IDA) makes an individual prone to bacterial infections. The antimicrobial defence mechanism of neutrophils is orchestrated by Nicotinamide Adenine Dinucleotide Phosphate Hydrogen (NADPH) oxidative burst which is iron-dependent. The few previous studies documenting a decrease in neutrophil oxidative burst in iron-deficient children have been based mainly on the Nitro blue tetrazolium test (NBT).

View Article and Find Full Text PDF

Background And Aim: Phosphate dysregulation is often associated with chronic kidney disease (CKD), and recent studies suggest that it may also be present in non-CKD patients with systemic conditions including iron deficiency anemia. This study aimed to evaluate the relationship between iron deficiency parameters (total iron-binding capacity {TIBC}, hemoglobin, and serum ferritin) and markers of proximal tubular dysfunction (the maximal tubular reabsorption of phosphate normalized to glomerular filtration rate {TmP/GFR} and tubular reabsorption of phosphate {TRP}) in non-CKD patients with iron deficiency anemia.

Methods: This was a hospital-based analytical cross-sectional study conducted in the outpatient department and/or inpatient wards of the Department of Internal Medicine, Swaroop Rani Nehru (SRN) Hospital associated with Moti Lal Nehru (MLN) Medical College, Prayagraj, Uttar Pradesh, India, between July 2023 and August 2024.

View Article and Find Full Text PDF

Interactions Between Toxic Metals and Serum Micronutrient Level in Auto-mechanics in Ibadan Metropolis, Nigeria: a Pilot study.

Biol Trace Elem Res

January 2025

Laboratory for Toxicology and Micronutrient Metabolism, Chemical Pathology Department, College of Medicine, University of Ibadan, Ibadan, Nigeria.

Auto-mechanics who often work without safety measures are vulnerable to the harmful effects of toxic metals like lead (Pb) and cadmium (Cd). These toxic metals exert their deleterious effect by interacting with the micronutrients at their primary site of action. This study aimed to investigate the effects of toxic metal exposure on serum micronutrient levels of auto-mechanics in Nigeria.

View Article and Find Full Text PDF

Background/objectives: Upper respiratory tract infections (URTIs) are a significant global health burden, and understanding the immune response is crucial for developing effective diagnostic tools and treatment strategies.

Methods: This study investigated the levels of specific biomarkers in 188 patients with URTIs and their association with demographic factors, comorbidities, and clinical outcomes. Immunoglobulin A (IgA), immunoglobulin E (IgE), neutrophils, serum iron, C-reactive protein (CRP), and erythrocyte sedimentation rate (ESR) were measured.

View Article and Find Full Text PDF

Intranasal iron administration induces iron deposition, immunoactivation, and cell-specific vulnerability in the olfactory bulb of C57BL/6 mice.

Zool Res

January 2025

School of Basic Medicine, Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases, Qingdao University, Qingdao, Shandong, 266071, China. E-mail:

Iron is the most abundant transition metal in the brain and is essential for brain development and neuronal function; however, its abnormal accumulation is also implicated in various neurological disorders. The olfactory bulb (OB), an early target in neurodegenerative diseases, acts as a gateway for environmental toxins and contains diverse neuronal populations with distinct roles. This study explored the cell-specific vulnerability to iron in the OB using a mouse model of intranasal administration of ferric ammonium citrate (FAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!