Participants in deep space missions face protracted exposure to galactic cosmic radiation (GCR). In this setting, lung cancer is a significant component of the overall risk of radiation-exposure induced death. Here we investigate persistent effects of GCR exposure on DNA repair capacity in lung-derived epithelial cells, using an enzyme-stimulated chromosomal rearrangement as an endpoint. Replicate cell cultures were irradiated with energetic Ti ions (a GCR component) or reference γ-rays. After a six-day recovery, they were challenged by expression of a Cas9/sgRNA pair that creates double-strand breaks simultaneously in the EML4 and ALK loci, misjoining of which creates an EML4-ALK fusion oncogene. Misjoining was significantly elevated in Ti-irradiated populations, relative to the baseline rate in mock-irradiated controls. The effect was not seen in γ-ray irradiated populations exposed to equal or higher radiation doses. Sequence analysis of the EML4-ALK joints from Ti-irradiated cultures showed that they were far more likely to contain deletions, sometimes flanked by short microhomologies, than equivalent samples from mock-irradiated cultures, consistent with a shift toward error-prone alternative nonhomologous end joining repair. Results suggest a potential mechanism by which a persistent physiological effect of GCR exposure may increase lung cancer risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6056477 | PMC |
http://dx.doi.org/10.1038/s41598-018-29350-5 | DOI Listing |
Nanotechnology
January 2025
Departamento de Física, Química e Matemática, CCTS, UFSCar-campus Sorocaba, Sorocaba, SP 18052-780, Brazil.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen.
View Article and Find Full Text PDFAerosp Med Hum Perform
November 2024
Introduction: The aviation occupational environment may expose a developing fetus to intermittent hypoxia, high gravitational force, toxic materials, loud noise, high frequency vibrations, and galactic cosmic radiation. These exposures in animal models are associated with adverse neonatal outcomes. We sought to investigate whether a maternal military aviation career was associated with adverse neonatal health outcomes.
View Article and Find Full Text PDFCancers (Basel)
November 2024
Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA.
Background: Exposure to galactic cosmic radiation (GCR) is a breast cancer risk factor for female astronauts on deep-space missions. However, the specific signaling mechanisms driving GCR-induced breast cancer have not yet been determined.
Methods: This study aimed to investigate the role of the estrogen-induced ERα-ERRα-SPP1 signaling axis in relation to mammary tumorigenesis in female mice exposed to simulated GCR (GCRsim) at 100-110 days post-exposure.
Front Physiol
November 2024
Radiation Biosciences laboratory, Medical College of Wisconsin, Milwaukee, WI, United States.
Front Plant Sci
November 2024
Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, China.
Introduction: Heavy ions of the galactic cosmic radiation dominate the radiation risks and biological effects for plants under spaceflight conditions. However, the biological effects and sensitive genes caused by heavy ions with different linear energy transfer (LET) values have not been thoroughly studied.
Methods: To comprehensively analyze the biological effects of heavy ions with different LET values on rice under spaceflight conditions, we utilized the Shijian-10 recoverable satellite (SJ-10) to transport the dehydrated rice seeds on a 12.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!